
CPSC 490 Input and Output in C++ Page 1 of 3

Introduction

Data input/output in C++ is done via stream classes defined in the Standard
Template Library (STL). The <iostream> library provides all the functionalities for
you to read from standard input and write to standard output. In this course, all I/O
will be done via standard input and standard output, so it is wise to use the
<iostream> library in every program that you will be writing. In addition, the
<sstream> library deals with I/O using the STL’s string class. This library is useful in
processing a string with a variety of data. To use these features, you should start
any programs with the following header:

#include <iostream>
#include <sstream>
using namespace std;

Note that <sstream> automatically includes the <string> class. Also, identifying the
namespace std is important, or you will need to prefix all standard library class,
methods, and variables with a “std::”.

Standard Input

<iostream> has the global variable cin, which defines the standard input stream.
The most common use of cin is its extraction operator “>>”. This operator is
overloaded for all standard types, including int, double, and string.

int n;
double f;
string s;
cin >> n >> f >> s;

Example 1. Reading an integer, then a double, then a string from standard input.

The extraction operator also does some input processing. Using this operator, the
input stream will read and discard any whitespaces, then parse data until it reaches
the next whitespace. For example, when the program in Example 1 is fed the
following 3 input files, the results are the same:

10
4.5_abc
 ^

10____
____4.5
abc____
 ^

____10______4.5__________
__abc
 ^

Example 2. Three different input files where Examle 1’s program will read the same
information for n, f, and s. Spaces are replaced with ‘_’ for clarity.

This is a very useful property of C++’s streams. You do not have to worry about
spaces separating input data. On the other hand, this can be troublesome in some
instances. For example, suppose you want to read in a person’s name:

string name;
cin >> name;

In this program, if the input has embedded whitespace, as in “John Doe”, then the
input will only set name=”John”, ignoring the last name. To fix this problem, we
need to read the input line by line.

CPSC 490 Input and Output in C++ Page 2 of 3

To read input line by line, C++ provides the global getline function call.

istream& getline (istream& is, string &str, char delim = ‘\n’);

This getline function reads from the input stream is, which in our case will be cin,
until one of the followings occurs:

(a) The end-of-file is reached,
(b) The maximum number of characters to be fit into a string is read,
(c) The delimiter character delim is read.

string names[100];
int i = 0;
while (getline(cin, names[i])) {

 i++;
}

John Doe
Mary Martin
.
.
.

Example 3. Reads from standard input line by line, storing each line in the names array.

Note: The getline function call will read in the delimiter and discard it. So in the
example above, names[0]=”John Doe”, and not “John Doe\n”.

Standard Output

The standard output stream in C++ is cout. In parallel to cin’s extraction operator,
output streams in C++ define the insertion operator “<<”. Similarly, the insertion
operator is overloaded for all standard data types, and can be used in sequences:

int age = 21;
string name = “John Doe”;
cout << name << “ is ” << age << “ years old.” << endl;

This will print to standard output the following string:

John Doe is 21 years old.

The special variable endl is defined in <iostream>, standing for “end-line”. All it
does is to print a ‘\n’ character, then flush the output stream. This is helpful when
printing to a console, where the output you are waiting for should be printed
immediately, and not buffered.

A special note in formatting
Some simple output formatting is available with C++’s streams. For more complex
formatting, C++ provides the <iomanip> class. However, these formatting are
complicated and hard to use. Thus, we recommend using printf from C for all
formatting. Please read the manual pages for more information about output
formatting in C++.

CPSC 490 Input and Output in C++ Page 3 of 3

Input/Ouput using Strings

It is easy to read and write with strings in C++, once you have mastered standard
I/O. This is because the STL provides stream classes for common objects like strings
and files. Once a string or a file is converted to a stream, all input/output methods
on that stream are the same as those of cin/cout.

1 #include <iostream>
2 #include <sstream> // defines the stringstream class
3 using namespace std;
4
5 int main()
6 {
7 int age;
8 string line, name;
9 while (getline(cin, line)) {
10 stringstream strin(line);
11 strin >> age;
12 getline(strin, name);
13 }
14 return 0;
15 }

21 John Doe
23 Mary Martin
37 Yvonne Campbell
.
.
.

Example 4. Using stringstream to parse input.

The code above reads from standard input line by line, where each line starts with
the person’s age, followed the person’s full name. Line 10 defines the stringstream
object strin. The constructor takes one parameter: the string to be processed. Line
11 uses the extraction operator to read the age of the person. Line 12 will then
process the rest of the line using getline.

Question: A small bug exists in the above code. Can you find it?

You can also use stringstream to write to strings, then use the str() member function
to get the string of the current stream. The following is an easy way to convert any
number to a string.

string intToString(int n)
{

 stringstream strout;
 strout << n;
 return strout.str();

}

This creates an empty stream strout, writes an integer to it using the overloaded
extraction operator, and returns the string written using str().

