Centroid Decomposition

Jason Chiu

February 11, 2015

Overview

(1) The Problem

- Problem description
- Solution
- Proof of correctness
- Time complexity
(2) Centroid Decomposition
(3) Example Problem

Problem description

Let T be an undirected tree. Find a node v such that if we delete v from the tree, spliting it into a forest, each of the trees in the forest would all have fewer than half the number of vertices from the original tree.

Solution

Let T be the given undirected tree with n nodes.
(1) Root the tree arbitrarily
(2) Perform DFS to obtain, for every node v, the size of the subtree rooted at $v: S(v)=1+\sum_{i} S(\operatorname{adj}[v][i])$
(3) For each node v, check if
$\max (n-S(v), S(\operatorname{adj}[v][0]), S(\operatorname{adj}[v][1]), \cdots)<n / 2$
halt and return v if this is satisfied
Note: we can combine steps 2 and 3 into a single DFS.

Proof of correctness

Theorem. There is always a solution
(1) If the root works, great
(2) If the root doesn't work, then we can recurse on the lop-sided subtree, because the other piece must be $<n / 2$
(3) Maximum subtree size gets smaller, so it must terminate eventually

Theorem. The algorithm produces a solution
This is obvious from the description of the algorithm.

Time complexity

$O(n)$ to compute the size of subtrees, and $O(n)$ to find the correct node, because the cost of the node search is $\sum_{v \in V}(1+\operatorname{deg}(v))=2 n-1$. Therefore, the time complexity is $O(n)$.

Easy! But why?

Centroid Decomposition

The solution of the previous problem finds a node v which we shall call a centroid of the tree. Now what happens if we apply the algorithm recursively to each subtree split by the centroid?

Centroid Decomposition

- We get a tree of centroids, which we shall call the centroid decomposition of the tree.
- Runtime is $O(n \log n)$ because we will recurse at most $\log _{2} n$ times.
- Notice this decomposition has $\log n$ depth, so we can essentially do divide and conquer on the tree!

Questions?

Problem (IOI 2011)

Given a weighted tree with N nodes, find the minimum number of edges in a path of length K, or return -1 if such a path does not exist.

- $1 \leq N \leq 200000$
- $1 \leq$ length $(i, j) \leq 1000000$ (integer weights)
- $1 \leq K \leq 1000000$

Solution

Brute force solution:

- For every node, perform DFS to find distance and number of edges to every other node
- Time complexity: $O\left(n^{2}\right)$

Obviously fails because $N=200000$.

Solution

Better solution:

- Perform centroid decomposition to get a "tree of subtrees"
- Start at the root of the decomposition, solve the problem for each subtree as follows
- Solve the problem for each "child tree" of the current subtree
- Perform DFS from the centroid on the current subtree to compute the minimum edge count for paths that include the centroid
- Two cases: centroid at the end or in the middle of path
- Use a timestamped array of size 1000000 to keep track of which distances from centroid are possible and the minimum edge count for that distance
- Take the minimum of the above two

Time complexity: $O(n \log n)$

The End

