Finding Eulerian tours in linear time

Angus Lim
CPSC 490

February 6, 2015

What is an Eulerian tour anyway

 I'm sure this is review- aka Eulerian cycle/Eulerian circuit
- directed path on graph
- visits every edge once
- starts and ends at the same vertex
- cf. Eulerian paths, which do not have the second condition
- we'll work with connected, undirected graphs because they're easier and Paul didn't specify what kind of graph

Historical context

totally not ripped off Wikipedia

Finding whether a tour even exists

a formal proof is "outside the scope of this course"

- consider an arbitrary vertex v
- in order for an Eulerian tour to exist, every edge adjacent to v must be visited
- for every edge leaving v, there must be an edge returning to v
- if there are n edges leaving v, there are n edges returning to v, a total of $2 n$ edges
- since n is an integer, there must be an even number of edges adjacent to v
- this is true for all vertices
- ergo, a necessary condition for existence of an Eulerian tour is that every vertex must have even degree
- this can be evaluated in $\mathcal{O}(|E|)$ time

Can we prove the converse?

- i.e., if we have a graph where every vertex has even degree, can we find an Eulerian tour?
- this is equivalent to the original problem
- we present the following algorithm, published by Carl Hierholzer in 1873

Finding the actual tour: Hierholzer's algorithm

 throwback to 1873- using what we figured out earlier, if we leave an arbitrary vertex v during path traversal, we are guaranteed that we can return to it
- we can thus do the following recursion, while there are unvisited edges:
- start at a vertex u, and arbitrarily traverse unvisited edges until u is reached again
- this creates a subtour, which may not traverse all edges
- recurse on vertices in the found subtour; if there are unvisted edges adjacent to it, we'll get another subtour, which can be inserted into the full tour
- using doubly linked lists, the runtime is $\mathcal{O}(|E|)$

An example

- note to self: you were too lazy to make nice diagrams in Inkscape so use the chalkboard

Questions?

