#### **Human Degrees of Freedom**



#### **Motion Sources**



# Motion Capture Technologies

- 1. mechanical
- 2. fibre optic bending
- 3. electromagnetic
- 4. inertial and gyros
- 5. active optical
- 6. passive optical
- 7. depth camera
- 8. multicamera vision
- 9. single camera vision

# (1) Mechanical





Monkey 2

inition.co.uk

### (2) Fibre optic bending



### (3) Electromagnetic



vrlab.epfl.ch





ascension-tech.com





ndigital.com (Waterloo)

#### (4) Inertial and Gyros

Inertial Measurement Unit (IMU) 3 accelerometers + 3 axis gyro









3-axis accelerometer sensorsmag.com





solid state gyro knol.google.com

#### (5) Active Optical





# (6) Passive Optical





Vicon, Motion Analysis, Northern Digital

#### (7) Depth cameras: Kinect, others



#### John MacCormick slides



"To keep the training times down we employ a distributed implementation. Training 3 trees to depth 20 from 1 million images takes about a day on a 1000

core cluster."

Kinect 2 (Xbox One)



#### (8) Multicamera vision









Figure 1: Left to right: an actor performing in the capture setup; one of sixteen views from the camera array; reconstructed T-shirt geometry; the real T-shirt is replaced by a rendering of the captured geometry with different appearance characteristic SIGGRAPH 2008



SIGGRAPH 2008

# (9) Single Camera Vision

