
Compositing and Matting

Robert Bridson

December 2, 2011

1



1 COMPOSITING OPERATIONS 2

As mentioned at the beginning, the final frames in a film are usually as-
sembled from many different images. Obviously if computer generated
effects are to be blended with real-world plates, there has to be at least two
images being combined — but even in a purely computer generated shot
the rendering will be split into several component images which are only
combined at the very end. This is useful from the standpoint of balancing
the load — different images can be rendered on different machines, and
even managed by a different team of artists — but is even more important
from the standpoint of control and artistic direction. If one element of a
shot doesn’t look quite right, it can be re-rendered hopefully without the
expense of re-rendering all the rest of the scene. Final decisions about how
bright or dark or blurred or colour balanced each element of the decision
can also be deferred to relatively cheap image-processing operations as late
as possible in production.

This chapter first deals with the basic operations used to combine, or com-

posite, images together. The second part tackles a related and much trickier
problem of bringing parts of real-world images into the compositing, sep-
arating the foreground from the background.

1 Compositing Operations

1.1 One Image Over Another

Let’s begin with the most common and simplest compositing operation,
placing one image over another, in particular thinking of the first image as
supplying a foreground which should supplant the background given by
the second image. A particularly good model to have in mind is of images
painted on clear sheets of plastic, and the composited result coming from
stacking the sheets on top of each other — in fact, this is exactly how a lot
of traditional animation with multiple layers is done.

At the most basic level, this operation requires us to make a decision at



1 COMPOSITING OPERATIONS 3

every point in the image whether the final colour should come from the
foreground image or from the background image. We encode this deci-
sion for every pixel in an extra channel (besides the usual red, green, and
blue) of the foreground image, usually called alpha. When ↵ = 0, the
foreground image is perfectly transparent and the background can show
through; when ↵ = 1 the foreground image is opaque and overwrites the
background.

If the alpha channel only has a single bit, on or off, it can’t handle the cases
where we would want the final pixel to be a blend of both the foreground
and background colours. This occurs when the foreground image is light
fog or smoke, for example, and should allow some fraction of the light
through from the background. Much more importantly, at the silhouette
edges of objects in the foreground, some degree of blending is required
to avoid ugly aliasing — as we have dealt with in primary rendering via
supersampling and averaging.

We therefore allow the alpha channel to take fractional values between zero
and one, which raises the question of how to do the blending in this case.
Thinking of alpha as encoding the “opacity” of the foreground pixel, it’s
reasonable to say the foreground allows (1 � ↵) of the background colour
through and contributes ↵ of its own colour:

Rfinal = ↵Rfore + (1� ↵)Rback

Gfinal = ↵Gfore + (1� ↵)Gback

Bfinal = ↵Bfore + (1� ↵)Bback.

(1)

Here the subscripts final, textitfore and back refer to colour channels (for a
single pixel) in the final, foreground, and background images respectively.
As an abbreviation we will sometimes combine the colour channels into a
single RGB vector ~

C:

~

Cfinal = ↵

~

Cfore + (1� ↵) ~Cback. (2)

Another way to think about this, especially in the context of antialiasing
edges, is that the alpha channel represents the fraction of the pixel area



1 COMPOSITING OPERATIONS 4

which the foreground occupies. With ↵ of the final pixel’s area being the
foreground colour and the remaining (1� ↵) of the final pixel’s area being
the background colour, the final pixel’s average colour works out to the
expression in equation (2).

1.2 Premultiplied Alpha

In the case where ↵ = 0, the foreground image essentially doesn’t exist:
it contributes nothing to the final colour. It’s a little odd in this case to
still have arbitrary RGB values. Additionally we will almost always only
look at a foreground image via a compositing operation with equation (2),
where the RGB values of the foreground are multipled by the alpha value.
For these reasons, and a matter of mathematical convenience later, it is very
common to actually store the RGB values already scaled by alpha: this is
called premultiplied alpha.

With a premultiplied alpha image, the stored RGB values for a pixel with
↵ = 0 must also be zero, and the compositing equation simplifies a little:

~

Cfinal = ~

Cfore + (1� ↵) ~Cback. (3)

This makes it clear that the premultiplied RGB represents the actual contri-
bution the image makes to the final pixel colour, not just the colour of its
fraction of the pixel.

It almost goes without saying that it’s critically important to be aware whether
an image has premultiplied alpha or not — if strange overly bright or dark
pixels appear around the edges of an object in the final composited image,
most likely confusion over premultiplied alpha is to blame.

1.3 Compositing Many Images Over One Another

What happens if we have a whole stack of images to composite together?
Obviously we need an alpha channel for each of them, apart from the fur-



1 COMPOSITING OPERATIONS 5

thest background. Armed with the above, we could start with the “fur-
thest” background and composite the next furthest over it to get a com-
bined background for the next, and so on. However, there may be cases
where we at first don’t know the furthest background and wish to do this
in another order. There we hit a snag, because we don’t yet have a formula
to produce a new alpha channel when compositing two images.

We’ll work this out with premultiplied alpha. One way to work out what
the result of compositing three images together would be, starting from the
background, and then demand associativity: the result should be the same if
the nearest two images are composited first, and then the result composited
over the background. Symbolically we can write associativity as

I1 over (I2 over I3) = (I1 over I2) over I3, (4)

for images I1, I2, and I3. Using equation (3), the left hand side at any pixel
gives:

~

Cfinal = ~

C1 + (1� ↵1)
⇥
~

C2 + (1� ↵2) ~C3
⇤
. (5)

Using ↵12 to denote the unknown alpha channel from I1 over I2, the right
hand side gives:

~

Cfinal =
⇥
~

C1 + (1� ↵1) ~C2
⇤
+ (1� ↵12) ~C3. (6)

Setting these two formulas equal gives us:

(1� ↵1)(1� ↵2) = (1� ↵12)

) ↵12 = ↵1 + (1� ↵1)↵2.
(7)

This has the delicious property of being exactly the same form as equation
(3) only for alpha instead of colour.

An alternative derivation, which provides greater insight into the underly-
ing assumptions, is to take a half-geometric, half-probabilistic viewpoint
on alpha. Again think of alpha as indicating the fraction of the pixel’s
area covered by the image — or equivalently, the probability that a ran-
dom point chosen uniformly from the pixel will be from the image. When



1 COMPOSITING OPERATIONS 6

we stack an image over another, both with ↵ < 1, the final result isn’t ac-
tually well-posed. For example, if both alpha values were one half, the top
image could completely obscure the bottom image (because they occupy
exactly the same half of the pixel) or the bottom image could show up in
full (because it occupies exactly the other half of the pixel), or anything in
between. To make it a well-posed problem, we need an additional assump-
tion on how the two images relate to each other.

The most natural assumption, from a probabilistic perspective, is that the
two images are independent: if you pick a point at random inside a pixel,
the chance it hits the second image is identical whether or not you know it
hits (or doesn’t) the first image. Geometrically this could be modeled as the
first image dividing the pixel along the x axis at fraction ↵1 and the second
image dividing the pixel along the y axis at fraction ↵2 — but this mental
picture doesn’t extend beyond two images!

From the assumption of independent probabilities, we can work out ↵12.A
random point chosen uniformly from the pixel has ↵1 chance of hitting the
first image, and (1 � ↵1) chance of not hitting it. If it doesn’t hit, it still
has an ↵2 chance of hitting the second image and (1 � ↵2) chance of not
hitting it. The chance of hitting either the first or the second is therefore
↵1 + (1� ↵1)↵2 as before.

1.4 Rendering Alpha

We have so far assumed the existence of the alpha channel without dis-
cussing where it comes from. Estimating it directly from a raw RGB image,
e.g. real footage, is difficult — see the next section “Matting”. However,
for synthetic images generated by a renderer, creating an alpha channel is
almost trivial.

For rendering opaque surfaces, every sample the renderer sets a colour for
should get ↵ = 1, and the other “empty” samples should be left at ↵ = 0.
If there are multiple samples per pixel for anti-aliasing, with a weighted



1 COMPOSITING OPERATIONS 7

average over samples producing the final RGB colour for a pixel, the same
weighted average between the alpha values of the samples should be used
for the pixel’s alpha. This very naturally fits the probabilistic or geometric
view of alpha: we’re estimating the fraction of samples that would hit an
object versus nothing.

Rendering partially transparent objects is trickier. In a raytracer, alpha can
be accumulated along the rays along with colours; in a Reyes-type algo-
rithm (that uses a so-called “A-buffer”) a compositing operation must be
performed at every sample to combine semi-transparent surfaces. OpenGL
doesn’t easily support rendering partially transparent objects in the first
place (without requiring triangles sorted by depth or similar restrictions).

1.5 Differential Rendering

With matchmove and the over compositing operation, and environment
mapping or a simpler estimation of the lighting in a real scene, it’s possible
to convincingly place rendered objects in real footage — with one excep-
tion. A real object in a photograph usually affects more than just the pixels
where it is directly visible: the light it reflects and, more importantly, the
shadows it casts are visible in other parts of the image. A synthetic object
has to approximate these effects too. It’s not immediately clear how to ar-
range for a synthetic object to cast a shadow on a real object in an image.
Rendering algorithms for computing shadows only work for the synthetic
objects being rendered.

In a landmark paper [Deb98], Debevec solved this problem by introducing
differential rendering (and in the same paper also introduced high dynamic
range environment maps for accurate lighting, i.e. using images that prop-
erly encode actual brightness rather than being clipped to the narrow 8-bit
colour channel range of typical computer images, and many other big steps
forward). The core insight is that the difference between a rendered image
with shadows and without shadows encodes just the effect of the shadows



1 COMPOSITING OPERATIONS 8

themselves — and that can be composited into real photos.

Differential rendering requires a “proxy” or rough approximation of the
real objects in the scene, or at least the surfaces where shadows from syn-
thetic objects will fall. The proxy need not be extremely accurate — it won’t
be seen in the final image — but it has to match the geometry of the real
scene closely enough to allow the synthetic cast shadow to look realistic.
There are computer vision methods for automatically reconstructing 3D ge-
ometry from photographs, but often a quick approximation created manu-
ally by an artist in modeling software will suffice; in either case establishing
the world space location of the proxy can be made part of the matchmove
process. The surface colours of the proxy can be even more approximate
— perhaps arrived at by back-projecting the real photo onto the proxy ge-
ometry, or even just using a uniform average colour from the real photo.
Again, the proxy won’t appear in the final image, but the more accurate it
is the more accurately we can compute the effect of the synthetic shadows
on the real scene.

The rendering proceeds in three passes as follows:

1 Render the synthetic object on its own, as you would normally, pro-
ducing image I1.

2 Render the proxy on its own (without the object you want to compos-
ite in), producing image I2.

3 Render the synthetic object and proxy together, including the shad-
ows of the synthetic object on the proxy, producing image I3.

The compositing steps are then:

4 Composite I1 over I2 to get I4: this is an image of the synthetic object
on top of the proxy without shadows.

5 Compute the pure shadow image I5 as the difference I4 � I3 in the



1 COMPOSITING OPERATIONS 9

RGB channels: this encodes how much light is lost in each pixel of
the proxy due to the synthetic object’s shadow.

6 Subtract the shadow image I5 from the real photo, darkening it where
the synthetic object should cast its shadow, to get I6.

7 Composite the synthetic object I1 over the shadowed real photo I6 to
get the final image I7.

1.6 Faking Motion Blur and Depth-of-Field

We earlier discussed how motion blur and defocus from depth-of-field can
be accurately approximated using supersampling in time and position on
the aperture. However, this isn’t always the most desirable approach:

• avoiding visible noise when the blur is extensive requires a large
number of samples per pixel;

• there might not be adequate supersampling support in the renderer
(e.g. OpenGL);

• it doesn’t provide any means to adjust the effect after 3D rendering
despite it mostly looking like a 2D image-space phenomenon.

This last point, control over the amount of blur, is a big deal despite our
earlier arguments that motion blur and defocus are critical elements to get
physically “right” for convincing renders. Like every aspect of graphics,
what is physically correct (at least, under some limited mathematical model
of the scenario) isn’t necessarily the best answer particularly when other
approximations are in play, and especially taking into account artistic in-
tentions. Physical correctness is a good starting point, but not the end goal.

In the case of motion blur, the physically correct motion blur might make
it too hard to see the most important details of a character’s performance
and thus should be reduced — perhaps only for one part of the image (say



1 COMPOSITING OPERATIONS 10

the character’s face). For an exciting action scene the director might want a
jerky, strobe-like effect as if filmed with a very short shutter time, but would
want to tweak exactly how jerky it looks only at the end of production once
all elements are in place. Extreme additional blur might be called for on just
one element to give a stylistic impression of incredible speed.

Depth-of-field is commonly exploited with real cameras to direct the viewer’s
attention. Even a purely static scene shot with an unmoving camera can tell
a dynamic story if the focus purposefully shifts from one object to another.
Directors sometimes want the same freedom to adjust depth-of-field as late
in the process as possible, perhaps in non-physical ways.

A common approach, therefore, is to save some extra data for each image
to guide an image-space blur during compositing to approximate the effect
of motion blur and defocus blur.

For motion blur, in the (fragment) shader we estimate the “displacement”
(velocity integrated over the frame time) of the object at that point pro-
jected into screen space — essentially how many pixels it is expected to
move horizontally and vertically in the duration of the frame. We calculate
each pixel in the final motion-blurred image as an average of raw pixels
that could move through it during the frame — or alternately put, a raw
pixel at (i, j) with displacement (�i,�j) would contribute to the whole
line segment between (i, j) and (i + �i, j + �j). If the motion blur is to
be increased or decreased, the (�i,�j) displacement can be scaled up or
down.

For depth-of-field, we simply save the Z-buffer along with the image. The
Z-buffer allows us to compute how far a pixel is from the desired focus
plane, which in turn controls the radius of a blur kernel (which has the
shape of the camera aperture, perhaps just a circle). This is just like motion
blur except instead of contributing to averages along a line segment, the
pixel will contribute to averages within a certain radius.



1 COMPOSITING OPERATIONS 11

1.7 Other Compositing Operations

As hinted at above there are many other ways to combine images. Adding,
subtracting, multiplying, blurring, or any other operation can be used. Ex-
tra channels can be especially useful — for example Z-buffers can guide a
smarter over operation between two interlaced images (where one image
is on top of the other depending on their relative Z values). The Z-buffer is
also useful in faking stereo 3D images, translating objects for the left versus
right eye depending on depth. Some shading or lighting operations can
even be deferred to the compositing stage if the per-pixel inputs are saved
(like normals, texture coordinates, etc.).


