
7 SHADING TRICKS 21

7 Shading Tricks

Writing advanced shaders is a major effort — even a job description — so
we can only scratch the surface of the craft here. We’ve already seen one
aspect, the part of a surface shader corresponding to a BRDF, for which
many theoretical and even directly measured models are available. You’re
already familiar with the notion of using texture maps to provide spatial
variation on a surface, which can obviously be generalized in the shader
context: any sort of texture map can provide input for any parameter in a
shader. In this section we’ll look at a few more common techniques in use.

7.1 Environment Maps for Mirrors

Mirror surfaces reflect the scene around them, which is inherently difficult
for Reyes or Z-buffer rasterization — these algorithms at their core only
render one primitive at a time, and don’t necessarily even have the rest
of the scene available when shading. Even for raytracers, mirror reflections
pose a real problem if the surrounding scene is not computer generated but
instead is supposed to come from real footage: the raytracer can’t trace rays
into the real world! The technique of environment mapping [BN76] luckily
can solve this issue in many scenarios.

The underlying assumption for environment maps is that the mirror ob-
ject be small relative to the distance between it and the rest of the scene
it’s reflecting. This of course might not be true, in which case the mathe-
matical validity is in question — but the method might still look plausible,
particularly if the object is curved and the reflections are expected to look
distorted and hard-to-understand for the viewer anyhow. This assumption
means that the rest of the scene looks almost the same from any point on
the object — there isn’t much “parallax”.

We store a single panaromic image of the rest of the scene, taken from a
single point in or near the object: this is recording what the incoming light



7 SHADING TRICKS 22

in every direction is for that point. We call this image the environment map.
As a matter of implementation, this image can be stored a number of ways
— underlying it as a mapping of the sphere of directions around the point
to 2D, which could be done by parameterizing the image with latitude and
longitude, or projecting six parts of the sphere onto the faces of a cube (a
so-called “cube map”), for example.

With the assumption, this environment map should be a good approxima-
tion to the incoming lighting at any point on the mirror object, so we can
just reuse it for all of them. The mirror shader than simply takes the in-
coming view direction, reflects it across the surface normal, converts that
reflection direction to a look-up in the environment map, and returns the
colour found there. The code is almost trivial.

Making the environment map in the first place is a bit more interesting.
If the surrounding scene is CG, then it can be directly rendered of course
(especially with the cube map representation: we just need to render the six
faces of the cube with six different perspective cameras). If the surrounding
scene is the real world set, a panaromic photograph has to be made. There
are several techniques available for this: multiple photographs pointing
in different directions can be stitched together, or a fish-eye lens used to
capture a large part of the surroundings (though not all of it). The cheapest
method of all is to get a mirrored ball, such as a Christmas tree ornament,
and take a zoomed-in photo of that from some distance away — virtually
every reflected direction is captured in the mirrored ball. Stitching together
two such photos from different standpoints can eliminate the appearance
of the camera in the reflections.

7.2 Image-Based Lighting

The idea behind environment mapping is incredibly powerful: “bake” the
surrounding illumination into an image, so a simple look-up suffices to
evaluate it. Baking complex calculations or real world data into images for



7 SHADING TRICKS 23

fast re-use in shaders is used all the time. A great example, generalizing
the mirror shader with environment maps, is image-based lighting. The
environment map is a good approximation of all the incoming light for
a point on the surface. If the surface is not a mirror, but has some more
complex BRDF (or is even just a plain Lambertian surface), that lighting
data is still useful.

Classic rendering uses synthetic point lights, directional lights, etc. but us-
ing these to accurately model the real lighting present in a real scene, or a
complex CG scene, is pretty cumbersome. If the real lighting needs a thou-
sand point lights for a good enough approximation, it’s also going to be
fairly inefficient to render — naı̈vely there would have to be a loop over all
lights for every point being shaded. Image-based lighting can solve these
issues.

Where a mirror BRDF works to select a single incoming light direction to
determine the outgoing light, which amounts to a single look-up into the
environment map, a more general BRDF performs a weighted integral over
many light directions — in the case of diffuse surfaces, all light directions
in the hemisphere above the surface point. We can accurately approximate
the integral with a weighted sum over the appropriate pixels in the envi-
ronment map.

Of course, if the environment map is high resolution, doing this large sum
every time the shader is invoked is going to be ruinously slow. However,
it’s perfectly reasonable to speed this up with other methods. For exam-
ple, a mipmap can provide a low-resolution version appropriate for diffuse
lighting (where basically the average or sum of light over a large area is re-
quired, not details on how it varies from pixel to pixel), or the environment
map can be prefiltered to match the required BRDF so a simple look-up is
again all that’s required.



7 SHADING TRICKS 24

7.3 Ambient Occlusion

We didn’t talk about this in class, and it won’t appear in the final exam or as-
signments, but it’s so remarkably useful and popular that I would be remiss not to
mention it.

Optical effects can loosely be divided into direct illumination, how incoming
light reflects off a surface straight to the viewer, and global illumination, the
more complex process of light interreflecting between several objects before
arriving at the viewer. Most of what we’ve looked at so far is really in
the realm of direct illumination, but certain global illumination effects are
perceptually important if a little subtle.

Monte Carlo raytracing can be easily extended to handle global illumina-
tion via recursive rays — to evaluate the incoming light for the BRDF in-
tegral, more rays can be sent out into the scene, which themselves may hit
objects and spawn further rays. However, Reyes and rasterizing renderers
may not even have the full scene in memory at any time since they render
each primitive separately; though of course a raytracer can be fitted into
the shaders, it’s more natural to seek approximations that more efficiently
fit into the Reyes or rasterization mindset.

The simplest global illumination approximation you’ve already seen is the
notion of “ambient light”. If only direct illumination is calculated, any sur-
face without a clear line-of-sight to a light source will be completely black,
in total darkness. In virtually every real scenario, however, there will be
indirect illumination: light from a light source partially reflects off every ob-
ject it can directly reach (weighted by the BRDFs), and that reflected light in
turn illuminates more objects, and further reflections continue to reach just
about every visible point in the scene. Reflections off a diffuse surface go
in all directions equally, so after a bounce or two, this light can be approxi-
mated as coming from all directions. This is the basic ambient light model:
the artist sets a level for the ambient light in a scene, and every object is il-
luminated with at least that much even if it’s shadowed from all other light



7 SHADING TRICKS 25

sources.

However, this ambient light model is too crude to be very realistic. A lot
more of the interreflected light will reach a flat surface wide open to the rest
of the scene than a narrow and deep crack. Looking around you should be
able to see that the edges and especially corners of a room are generally a
little darker, since a little less light of the interreflected light can reach them
— there are less incoming directions for a corner than the middle of a wall.
This variation in available light is subtle, and usually quite smooth, but is
extremely important in establishing a realistic look.

The technique of ambient occlusion (AO) is a convincing approximation for
this aspect of global illumination [Lan02]. In a pre-rendering stage an “am-
bient occlusion map” is calculated for each object in the scene. The AO
value at a point on a surface is a fraction between 0 and 1 indicating (ap-
proximately) how much ambient light can reach that point. In other words,
if you looked at the hemisphere of directions around the point, the AO
value is the fraction of the hemisphere that isn’t occluded by other geome-
try — where incoming light could come from. This can be estimated with
a simplified raytracer (firing a random selection of rays from each mesh
vertex, say) or with faster approximations appropriate for hardware raster-
ization (e.g. [BJ07]). In the actual shader call during rendering, the ambient
light is scaled by the AO fraction at the given surface point, using just a
quick look-up into an AO map or interpolation from vertex AO data.

7.4 Shadow Maps

Shadows are almost trivial to accurately capture with raytracing — the ren-
derer can simply trace a shadow ray to a light to determine whether or not
something blocks the light from reaching a given surface point. As always,
this raytracing could be built into a shader for a Reyes or rasterization ren-
derer as well. However, efficiently capturing shadows without raytracing
remains one of the central challenges in real-time rasterization rendering



7 SHADING TRICKS 26

and is similarly difficult for Reyes.

Several solutions exist, with varying tradeoffs between complexity, perfor-
mance, and image quality. We will focus on probably the simplest and most
popular, shadow maps [Wil78].

Just as rasterization and raycasting can be seen as duals of each other based
on changing the order of two nested loops (loop over pixels, loop over ge-
ometry that overlaps the pixels), shadow rays and shadow maps can be
seen as duals with a similar switch in when and where shadow informa-
tion is computed, but one extra approximation for the shadow maps.

In a raytracer, when shading a point on a surface with respect to some light,
a shadow ray is cast towards the light to see if any opqaue object is closer
to the light along that path: if so the light is blocked and the point is in
shadow, and if not the light is shining on the surface so the lighting calcu-
lation can add to the final colour. The fundamental test here is if another
object is closer to the light along the ray. Turning this around to the light’s
point of view (literally!), the light is going to illuminate the closest surfaces
it can see in any direction, and leave the rest of the scene in shadow. The
idea behind shadow mapping is to actually render the scene from the per-
spective of the light (using a perspective projection for a point light or an
orthogonal projection for a directional light), recording the closest surface
for every ray — in other words, saving a depth map, i.e. the Z-buffer from
the render. In the primary rendering pass, a shader can transform the point
into the camera’s projection/modelview space and perform a look-up into
the shadow map to see if it’s the closest surface (lit) or further away (in
shadow).

There are some difficulties with shadow maps. When a raytracer casts a
shadow ray, it usually has to start the ray a tiny distance off the surface
in case rounding error causes an erroneous intersection with the surface
itself. For shadow maps, rounding error is further compounded with a
much more significant interpolation error from the discrete Z-buffer sam-
ples in the shadow map (it’s likely the point being shaded doesn’t coincide



7 SHADING TRICKS 27

exactly with a shadow map sample, but instead falls between them and so
the depth from light must be interpolated). For this reason, a bias is added
to the comparison between the surface point and the shadow map, to avoid
surfaces shadowing themselves (an error which causes sporadic black spots
to appear on surfaces, hence the name “surface acne”). Of course, if the
bias is too large, shadows will be incorrectly computed, and regions which
should be in shadow will still be lit.

Used as is, shadow maps also may cause aliasing artifacts. The decision of
lit vs. in shadow is strictly Boolean: is the interpolated shadow map depth
less than or greater than the point’s computed light depth plus bias? If the
shadow map is low resolution, with a single shadow map “texel” applying
to many pixels in the final image, the finite resolution of the depth map will
be quite apparent. Going to very high resolution, so this simply doesn’t
occur, is one possible expensive solution; another is to supersample the
depth map with nearby points to the point being shaded and taking the
average of the shadowing results to generate a fraction between zero and
one, so-called percentage-closest filtering [RSC87].

Many other extensions to shadow maps, as well as quite different algo-
rithms such as “shadow volumes”, have been proposed. The recent book
by Eisemann et al. is a great resource for further reference [ESAW11].

7.5 Noise

Finally, any discussion of shaders must mention the concept of noise, an
enormously important type of mathematical function used as a primitive
building block for many complex shaders. Introduced by Ken Perlin [Per85b],
noise provides a way to incorporate random variation into functions in a
controlled, predictable way.

A classic example is something like the varying colour of a sawn block of
wood. The pattern of the woodgrain has a lot of structure — smooth con-
tours with a gradation from light to dark — but isn’t perfectly regular. Ev-



7 SHADING TRICKS 28

ery tree grows a little differently, has knots at unpredictable locations, and
so forth, so building a periodic pattern with sine curves or the like would
look wrong. Humans are exquisitely talented at seeing repetitive patterns
and symmetries, and when they crop up in places they shouldn’t it destroys
the suspension of disbelief. However, setting just a random colour at every
point on the surface obviously wouldn’t respect the expected structure at
all, or even be smooth.

Noise provides a smoothly varying function with an element of random-
ness. A good noise function will have a predictable amplitude, say be-
tween -1 and 1, and a predictable scale over which is varies, say oscillating
once between two consecutive integers on average. However, unlike a sine
curve, it shouldn’t be periodic or have any other humanly discernible pat-
tern — and yet it still should be well-defined and repeatable (namely, if you
evaluate the noise function twice with the same arguments you should get
back exactly the same value).

There are many possible ways to do this, varying in performance and qual-
ity. Most of them use some variant of the following:

• Define the noise function as a Hermite spline with integer knots.

• Set the value of the function at knots to zero.

• Set the derivative of the function at a knot to a pseudo-randomly cho-
sen value, e.g. with a hash function on the integer knot to index into
a fixed array of preset values.

The details of exactly what spline and what hash function is used vary con-
siderably. The critical thing to do well is the hash function, as it’s responsi-
ble for injecting the apparent random variation of the noise function.

Noise functions can be built in any number of dimensions. We haven’t dis-
cussed multi-variable splines yet, though they’re tremendously important
for geometric modeling, but really the only crucial conceptual extension is



7 SHADING TRICKS 29

that the “derivative” values in a multi-variable Hermite spline are going to
at least be gradient vectors.

Once you have a noise function, it can be used in a plethora of ways to
build complex shaders. At the very simplest, any regular mathematical
expression based on sine or cosine which has the right structure, but suffers
because it’s exactly periodic, can be fixed by replacing sine with noise, or
adding noise to the argument of sine, etc.



REFERENCES 30

References

[BJ07] Jared Boberock and Yuntao Jia. High-quality ambient occlusion.
In GPU Gems 3 / Chapter 12, pages 239–274. Addison-Wesley,
2007.

[BN76] James F. Blinn and Martin E. Newell. Texture and reflection in
computer generated images. Commun. ACM, 19:542–547, Octo-
ber 1976.

[CCC87] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The
reyes image rendering architecture. SIGGRAPH Comput. Graph.,
21:95–102, August 1987.

[Coo84] Robert L. Cook. Shade trees. SIGGRAPH Comput. Graph.,
18:223–231, January 1984.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Dis-
tributed ray tracing. SIGGRAPH Comput. Graph., 18:137–145,
January 1984.

[ESAW11] Elmar Eisemann, Michael Schwarz, Ulf Assarsson, and Michael
Wimmer. Real-Time Shadows. A.K. Peters, 2011.

[GSKC10] Larry Gritz, Clifford Stein, Chris Kulla, and Alejandro Conty.
Open shading language. In ACM SIGGRAPH 2010 Talks, SIG-
GRAPH ’10, pages 33:1–33:1, 2010.

[HL90] Pat Hanrahan and Jim Lawson. A language for shading and
lighting calculations. SIGGRAPH Comput. Graph., 24:289–298,
September 1990.

[Lan02] H. Landis. Production-ready global illumination. In SIGGRAPH
Course Notes 16, SIGGRAPH 2002, 2002.

[Per85a] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph.,
19:287–296, July 1985.



REFERENCES 31

[Per85b] Ken Perlin. An image synthesizer. In Proc. SIGGRAPH, pages
287–296. ACM, 1985.

[RSC87] William T. Reeves, David H. Salesin, and Robert L. Cook. Ren-
dering antialiased shadows with depth maps. SIGGRAPH Com-
put. Graph., 21:283–291, August 1987.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph., 12:270–274, August 1978.

[ZHR+09] Kun Zhou, Qiming Hou, Zhong Ren, Minmin Gong, Xin Sun,
and Baining Guo. Renderants: interactive reyes rendering on
gpus. ACM Trans. Graph., 28:155:1–155:11, December 2009.


