
Rendering and Shading

Robert Bridson

November 11, 2011

1



1 SUPERSAMPLING 2

While rendering is often treated as a separate topic from animation, it is
still an integral part of the process, and the special requirements of anima-
tion (and film visual effects in particular) do guide certain choices on the
rendering side, and vice versa. We’ll first look at a few basic requirements
on rendering algorithms, before the commonly used methods themselves,
and then focus on the process of shading which tends to dominate both the
computer and user time spent on rendering.

1 Supersampling

We will focus on film visual effects, as it arguably sets the bar highest for
rendering sophistication: if the computer generated imagery is to seam-
lessly blend into real footage, it has to be photorealistic. As we said before,
the key insight is to set up rendering as a simulation of a real camera’s ac-
tion and the physics of light in the scene. Of course, we may frequently
want to permit unphysical things to happen for artistic reasons, such as
eliminating inconvenient shadows, in the same vein as real movie sets
modify reality with the addition of special lights and props. This should
be an artistic option, though, not an unavoidable restriction.

Review the action of a real camera. When a frame of film is recorded, the
shutter is opened and light from the scene shines into the camera body
through the aperture, is refracted through the lens system, and hits the im-
age sensor (or initially unexposed film). The sensor is divided into pixels
roughly speaking (or, if it’s actual film will be scanned into pixels later),
i.e. its area is split into a grid of sub-areas. Each sub-area accumulates a
measure of how much light strikes it, until the shutter closes again and the
frame is finished. The total amount of light recorded over the whole area
of a pixel for the whole duration of the time that the shutter is open is what
is saved as the value of that pixel in the final image.

A pixel in a real camera’s image is clearly not just the colour of a single light
ray hitting the centre of the pixel at a single instant in time. It is rather an



1 SUPERSAMPLING 3

integral over the light rays that hit anywhere in the pixel area, go through
any point in the camera aperture, and at all times while the shutter is open.1

The effects of integrating over these three parameters (where on the pixel,
where in the aperture, when in time) are quite visible:

• Integrating over the entire area of the pixel is a form of antialiasing,
softening out the jagged edges between distinct regions of the image
(e.g. where both a black region and a white background overlap a
pixel, a proportional shade of grey will be measured) and reducing
Moiré patterns and other artifacts seen in simple point samples of
rapidly varying images. In a real digital camera, this softening may
be enhanced for better quality (less grainy) images by the addition of
a translucent diffuser in front of the colour filter / sensor package. In
rendering, the antialiasing properties can be similarly enhanced by
changing the integral over a pixel to use a smooth weighting kernel
spread out over the pixel and its near neighbours.

• Integrating over the aperture causes depth-of-field defocus. For a point
in the scene which is in focus, all light paths through the aperture
end up converging on the same point on the sensor. For a point in
the scene that’s too close or too far from the camera, however, the
light rays extending from it to different points on the aperture end up
hitting the sensor at different places, blurring the light over an area.2

• Integrating over the shutter time causes motion blur. If something
moves fast enough, it will send light to a whole path of different pix-
els on the sensor.

1Going into the quantum physics level, it’s perhaps better modeled as a sum of distinct
photons that make it through the aperture to somewhere on the pixel while the shutter is
open, but we generally will happily stick with a continuous integral to simplify life.

2The precise area over which it is blurred is in fact the same shape as the aperture, but
scaled to a size depending on how far out of focus it is. If you’ve ever seen a tiny but bright
point of light out-of-focus in an image, you’ll notice it appears as a disc or polygon—that’s
actually the shape of the camera aperture you’re seeing.



1 SUPERSAMPLING 4

To seamlessly integrate computer generated images into real footage with
all these effects, the renderer has to be able to approximate them. In some
cases they can be adequately approximated with image operations (special
blurs), but especially for antialiasing this is often not good enough.

The best general purpose method we have to approximate these integrals is
supersampling. For example, let’s take a really simple example of an integral
where we know the exact answer:

Z 1

0
x

2
dx =

1

3
. (1)

If we couldn’t find the antiderivative 1
3x

3 for some reason, we could ap-
proximate the answer by sampling the integrand at several points {x1, . . . , xn}
in the interval [0, 1], and taking their average:

Z 1

0
x

2
dx ⇡ x

2
1 + x

2
2 + · · ·+ x

2
n

n

(2)

As long as those samples are uniformly distributed (not biased towards
one endpoint, say), it can be shown that our estimates will converge to
the correct answer the more samples we take. Here’s a table with some
randomly chosen samples demonstrating the convergence:

samples estimate
.221 .0488
.221, .969 .4939
.221, .969, .014 .32933
.221, .969, .014, .525 .31591
.221, .969, .014, .525, .378 .28130
.221, .969, .014, .525, .378, .758 .33018

The use of random samples gives this method the name Monte Carlo. Uni-
formly spaced samples would converge faster in this example, but is not
as attractive for rendering since the remaining errors in the estimate might
correlate across pixels in visible structured patterns, a bad artifact.3

3Even greater convergence is possible with careful numerical quadrature algorithms,



1 SUPERSAMPLING 5

There are many techniques to improve the convergence of Monte Carlo
without introducing artifacts. The most common example is using strati-
fied or jittered patterns. For our one dimensional integral, this would amount
to dividing up the interval [0, 1] into equal subintervals, and picking one
random sample from each subinterval. This guarantees the samples are
well-spaced across the domain, but are still quite random. Running the
same experiment with jittered samples gives:

jittered samples estimate
.365 .13322
.157, .733 .28097
.285, .421, .784 .29104
.229, .403, .547, .874 .31948

Going back to the rendering problem, for each pixel we can take multiple
samples, varying the precise position within the pixel (perhaps using a jit-
tered configuration from a uniform subgrid), the position on the aperture
the light ray should go through, and the time the sample is taken during
the shutter open period. The average colour over all these samples4 gives
the final estimate for the image. Cook et al. [CPC84] introduced this idea in
the context of ray tracing (and extended it to calculate some other impor-
tant effects which we will discuss later in this chapter) but at the camera
sampling level it can equally apply to other rendering algorithms.

which place the samples and weight their contributions in certain optimal ways — but
again these aren’t as useful in rendering where the remaining errors can show up as faint
but distracting patterns in the final image.

4Again, for high quality results it’s best to use a weighted average with weights taken
from a smooth kernel function like a Gaussian spread out over a small neighbourhood of
pixels.



2 PERFORMANCE 6

2 Performance

The scenes which are rendered, for film especially, have grown in detail
and scope as fast or faster than computing power has grown over the past
three decade. Rendering software has to be able to efficiently process (at
the present) dozens of gigabytes of scene description for a single frame. At
one time almost all the data was in the form of texture maps applied to
relatively simple geometric primitives. Texture maps continue to be huge
but the raw geometry has now, in some cases, also grown formidably large
— scanners and physical simulation both are used to generate meshes or
point clouds with hundreds of millions or more vertices, today.

Depth complexity, i.e. how many distinct surfaces project to different depths
at the same pixel on average, is also quite relevant. Earlier there were
strong arguments as to why depth complexity remains small even as over-
all scene complexity increases. For example, in the office where I am writ-
ing this, there are many richly detailed surfaces visible, but they don’t over-
lap each other significantly if I don’t go beyond the walls of the room. The
rest of the building is invisible from my current viewpoint, so in a synthetic
render of my office I wouldn’t even bother modeling it — or it could be au-
tomatically ignored via “occlusion culling”. However, there are now also
common cases where deep depth complexity is unavoidable: outdoors in
a forest or tall grass or a crowd, for example. Gracefully handling depth
complexity is becoming important in some (but not all) scenarios.

Meanwhile, hardware has steadily moved in a trend where two aspects
dominate performance: parallelism and data movement.

High-performance hardware exposes parallelism at several levels, such as
vectorization (a type of SIMD / Same Instruction Multiple Data execution,
where the same operation is applied to a vector of four numbers instead of
one at a time) or multithreading (a type of MIMD / Multiple lnstructions
Multiple Data, where completely independent threads of execution operate
simultaneously). Algorithms must exploit this to see real gains from the



3 RENDERING ALGORITHMS 7

hardware.

The speed at which processors can crunch numbers now is vastly faster
than the speed at which data can be fetched from or written to main mem-
ory, or even transferred between processors. Optimizing data movement
(e.g. fetching the next block of data at the same time as processing the cur-
rent block) and maximizing the amount of useful work that can be done
relative to the number of accesses is crucial. Algorithms which randomly
skip through memory pay a terrible price; “data locality” (working on data
stored nearby in memory) must be considered for any data structure.

3 Rendering Algorithms

There are basically three major rendering algorithms at work today.5 You
should already be familiar with Z-buffer rasterization as exemplified by
APIs such as OpenGL, and raytracing; the other big algorithm is Reyes,
used primarily in the film industry. It’s important to understand the dif-
ferences between these, particularly in terms of shading: what parts of the
rendering algorithm are programmable by the user?

Let’s first review Z-buffer rasterization. The rendering pipeline consists
essentially of the following steps (ignoring some that aren’t relevant to our
discussion, such as blending and or enhancing performance through tiling
the image):

1 A single rendering primitive (usually triangle, perhaps point or line
or quad) is specified with vertex data (typically position in 3D, per-
haps also normals, texture coordinates, colours etc.).

2 Each vertex is processed independently to be ready for the image.
Traditionally this would involve applying model-view and projection

5I ignore certain specialized scenarios such as volume rendering for scientific and medi-
cal visualization: I’m only focusing here on general-purpose methods for primarily render-
ing surfaces in an animation context.



3 RENDERING ALGORITHMS 8

transformations of the position to normalized device coordinates, sim-
ilar processing of the normals, and related lighting calculations. More
generally this is handled by a vertex shader (see below).

3 The primitive is clipped against the bounds of the view frustum, elim-
inating problems with triangles that touch or cross the camera plane
(projected to infinity by perspective) and also saving subsequent steps
from working with off-screen geometry.

4 The clipped primitive is rasterized to fragments (essentially sample
points, usually one per pixel) where processed vertex data is inter-
polated. Traditionally calculations such as a texture look-up happen
here; more generally a fragment shader (see below) calculates the frag-
ment colour and depth (or other outputs).

5 The depth test is applied to each fragment vis a vis the Z-buffer, up-
dating the final image values.

More recent hardware has augmented this with an additional step after the
vertex shader, “geometry shading”, which can generate new primitives —
for example, replacing a large triangle with an intricately deformed high
resolution surface. This is a big step forwards in capability, but not as
widely used yet: compare it to the dicing/shading stages of Reyes below.

Z-buffer rasterization excels for scenes where the primitives are large (map
to many fragments) and most of the complexity comes from textures: the
rasterization has very low overhead and easily parallelizes, the texture ac-
cesses are nicely coherent. Even when the primitives are smaller, there is
plenty of parallelism to be had between primitives (albeit needing careful
handling of parallel access to the final image and Z-buffer). Since prim-
itives are handled independently, they can be streamed through the ren-
derer without requiring the entire sene be present in memory at the same
time. However, performance suffers when a scene has high depth com-
plexity: a lot of shading work is done for vertices and fragments which
don’t show up in the final image, since shading occurs before the depth



3 RENDERING ALGORITHMS 9

test. If geometric complexity grows to the point where primitives are much
smaller than a pixel, there’s also a waste in processing and shading vertices
which don’t contribute to fragments.

The Reyes algorithm by Cook et al. [CCC87] is similar in that it rasterizes
one primitive at a time, in essence, but has a few notable differences. It pro-
ceeds as follows, again skipping over some of the implementation details:

1 A single rendering primitive is specified at a relatively higher level
(e.g. a cone), subject to transformations.

2 If the bounding box of a primitive is too large, it is split into smaller
primitives which correspond to a quadrilateral in parameter space,
and the rendering proceeds with them. If a primitive’s bounding box
lies outside the view frustum, it is culled — there is no clipping to the
frustum in Reyes.

3 Each (sub-)primitive is diced into a regular grid of micropolygons along
the natural parameterization axes, such that each micropolygon is a
quad roughly half the size of a pixel (or some other user-specified
fraction of a pixel). Note this is not a rasterization; the quads are not
necessarily aligned with pixels, just of comparable or smaller size.

4 Each grid is shaded: a surface shader runs at each grid vertex to de-
termine its colour. The shader here may even change the position,
though within the limits of the bounding box (ipso facto, the bound-
ing box provided for a primitive has to take into account how far
vertices may change their position when shaded).

5 The shaded micropolygons are rasterized against samples, with a Z-
buffer to determine how to combine them. Typically in Reyes many
samples are taken per pixel, possibly jittered in time and aperture
position too, to provide antialiasing etc. If motion blur is in play, each
quad needs to know both start and end positions during the shutter
time so it can interpolate its position to the sample time if need be.



3 RENDERING ALGORITHMS 10

6 Samples are combined with a weighted average into pixel values.

The major algorithmic differences compared to OpenGL are that Reyes
doesn’t need clipping, and that (most of) the shading is all done at one
stage before rasterization, decoupled from both the geometry resolution
and the final image sampling rate. Reyes also has had a focus on quality
from the start, supporting various curved primitives as well as supersam-
pling to achieve antialiasing, motion-blur and depth-of-field; OpenGL is
possibly evolving in a direction of supporting these (there’s no fundamen-
tal reason other than available hardware performance that it can’t) but is
not there yet.6 However, these aren’t enormous differences — for exam-
ple, several authors have worked out high performance implementations
of Reyes on GPUs too, e.g. [ZHR+09]. In particular, essentially the same
performance comments apply equally to Reyes with the exception that the
Reye decoupling of shading rate from geometry resolution (OpenGL ver-
tex shaders) and image sampling rate (OpenGL fragment shaders) means
performance can be tuned a bit better. In most film shots, shading accounts
for the vast majority of render time.

Raytracing reorders the rendering process significantly, and in so doing
supports extensions to capture just about all optical effects. A basic ray-
tracer works as follows:

1 The entire scene description is loaded into a ray-query structure of
some sort, such as a KD-tree, to permit fast ray tests.

2 For each image sample a primary ray is generated and traced into
the scene: the colour of the sample is determined by which geom-
etry it hits and the execution of shaders at those intersections. For
opaque surfaces, only the frontmost intersection needs to be found
and shaded.

6Full Screen Anti-Aliasing (FSAA) has been around a while, using a structured form
of supersampling; matching the motion-blur and depth-of-field capabilities of Reyes via
supersampling is still a way off.



3 RENDERING ALGORITHMS 11

3 Samples are combined with a weighted average into pixel values.

In terms of quality/flexibility the one difficult point about ray tracing com-
pared to the other algorithms is displacement shading: a ray intersection
can’t simply be moved during shading as micropolygon vertices can in
Reyes. Displacements must be computed before the intersection tests —
scheduling that component of shading (at an appropriate resolution) in an
efficient way isn’t trivial. Likewise decoupling the shading rate from the
sampling rate isn’t obvious — however, it is naturally decoupled from the
geometry resolution, even more so than Reyes which must shade even the
smallest primitive at least into one micropolygon.

Raytracing enjoys several advantages asymptotically for scene and depth
complexity. With typical acceleration structures and typical scenes, ren-
dering cost per sample scales with the logarithm of depth complexity, not
linearly (as it does with the other two algorithms). Raytracing can also
guarantee that only intersections which contribute to the final image will
be shaded, since the intersection tests occur before shading. When there
are many primitives per pixel, or high depth complexity, raytracing has a
natural advantage — we are arguably often in that scenario nowadays.7

That said, the overhead of raytracing can be significantly greater than the
other algorithms — the entire scene has to be available at once, rather than
streamed through one primitive at a time, and in a naı̈ve implementation
each ray incurs a lot of memory access and arithmetic which are amortized
across multiple samples/fragments/micropolygons in the other methods.
To achieve high performance, nearby rays must be bundled into groups
which are traced in parallel for example.

7Of course, more advanced algorithms are being developed to automatically and adap-
tively “simplify” overly complex geometry so there are never more than a few primitives
per pixel, a geometric form of mipmapping called “Level of Detail” processing. Likewise,
advanced culling methods can help reduce depth complexity. However, to reliably do this
in general is a very hard problem, a subject of ongoing research.



4 SHADING 12

4 Shading

Shading has a special meaning in the context of rendering. While it origi-
nally just referred to the code which calculated the colour of a point on a
surface based on material information and lighting (hence the name “shad-
ing”), it now refers to essentially any user-customizable part of determin-
ing the appearance of elements in a scene. While the choice and imple-
mention of the core rendering algorithm, as discussed above, is of utmost
importance, the bulk of the programming effort (and computation) in typ-
ical rendering tasks lies in shading.

Shading began with relatively simple models of appearance, such as con-
stant colour, Lambertian (a.k.a. diffuse, or matte) shading, mirror reflec-
tions, the Phong glossy model, etc. Early renderers, and even many today,
provided a library of such models and allowed the user to pick which was
in use, and set its parameters. The code implementing such a model would
be called a “shader”.

The major difficulty with this approach is when none of the provided shaders
quite capture the phenomena of interest. The real world is full of materials
with extremely complex view- and lighting-dependent appearance. For ex-
ample, even a simple piece of white writing paper could be approximated
as Lambertian: it’s fairly diffuse. However, if you look at it from a glancing
angle (view direction nearly parallel to the paper) it becomes much more
specular; if you look at it closely the detailed texture of fibres matted to-
gether becomes apparent; if there’s light on the other side the translucency
of thin paper is obvious. Properly capturing the appearance of ink or toner
or pencil graphite on the paper, to appear photorealistic in a close-up shot,
adds a whole other level of complexity. It’s unlikely that every such sce-
nario will be anticipated in advance by the programmers of the renderer.

Another possibility that some renderers have adopted is to provide a dy-
namic library, “plug-in” mechanism where users can program their own
shaders to match the renderer’s API with a standard language such as



4 SHADING 13

C++. This opens up wide new possibilities for users, who can add sup-
port for their special requirements. However, the advantage of having the
full power of a general purpose programming language can also be a disad-
vantage: all sorts of bugs, including crash bugs, security holes, and serious
performance disasters, are possible. General purpose programming lan-
guages also may make common shading operations (such as working with
vectors, transforms, textures) more difficult or verbose than desired. Such
plug-ins are typically “black boxes” of compiled code, and can’t be directly
analyzed by the renderer in useful ways without tremendous effort in dis-
assembly — a topic to which we’ll return below. Finally, they’re restricted
to the regular hardware for which compilers are available: execution on a
GPU is generally out of the question.

The best solution has been to instead develop a “Domain Specific Lan-
guage” for shading, i.e. a shading language. The evolution of shading lan-
guages went through Cook’s shade trees [Coo84] and Perlin’s original im-
age synthesizer [Per85], but was realized in full by Hanrahan and Law-
son [HL90] for Pixar’s RenderMan Reyes renderer. A shading language is
a specialized programming language which only exposes aspects of com-
putation relevant to rendering, provides convenient support for common
shading operations (such as vector and matrix operations etc.), and can be
analyzed and executed by the renderer as needed to compute images.

Shading languages open up enormous possibilities for rendering. Obvi-
ously they can implement mathematical expressions for new models of ap-
pearance, or combine existing expressions in novel ways, but they can do
a lot more. This is particularly true when you begin to view rendering as
capable of more than simply generating a standard image file of coloured
pixels. For example, in concert with shaders, a renderer can save more than
just colour (or not even colour): the “alpha” or transparency of each pixel,
the depth of a pixel (what is stored in the Z-buffer), the ID number of the
closest primitive to the camera in each pixel, the velocity of the geometry at
each pixel, and many more variables are possible outputs. These in turn can
be used creatively as inputs to further rendering (and shading) or image-



4 SHADING 14

processing passes, some of which we’ll look at in more detail below. As
mentioned above for vertex/geometry shaders and Reyes surface shaders,
displacement shaders can even modify the geometry being rendered, e.g.
turning a simple sphere into a baseball with raised sitches and other geo-
metric details. Shaders can likewise take inputs from many sources: pa-
rameters set by a user, the position of the point being shaded, the normal
and texture coordinates at that point, any number of texture map images
(some of which may be abstract information derived from previous ren-
dering passes), the set of lights in the scene. Shaders might even be given
access to the full scene geometry as well: a common trick in rasterizing ren-
derers is to write a mini-ray-tracer in the shading language to permit effects
like volume rendering of smoke which are hard to do with rasterization.


