
4 MATCHMOVE 24

4 Matchmove

Our last topic of the chapter isn’t generally classified as Inverse Kinematics,
but turns out to be nearly the same problem in a slightly different setting.

The next chapter is all about rendering and compositing for animation, for
example touching on how to integrate digitally rendered images into real
footage (plates). While there’s a lot to say about matching lighting condi-
tions and shadows, motion blur, etc. and some interesting work in figuring
out which pixels are foreground or background (opaque or transparent, or
in between), the first and foremost problem is making sure the virtual cam-
era matches up to the real camera that took the plate.

For example, suppose a digitally rendered human is supposed to be added
on top of a photo of a city square, appearing as if they were standing on
the ground next to a real person. If the digital addition is rendered with the
wrong size, or their feet show up in the wrong spot on the image, or from
more of a top-view than the real person, or more subtly with a different
amount of perspective foreshortening, the illusion will utterly fail. Audi-
ences will either see the problem and laugh at the ineptitude of the effects,
or perhaps will just get subconsciously uncomfortable with something “not
being right”. If the camera is moving, the tolerance for error is even less —
an inconsistent virtual camera will show the rendered objects sliding over
the screen in a strange unreal way.

The procedure of matching up the virtual camera to the real camera is
called matchmove (with a special emphasis on the harder problem of mov-
ing cameras). “Matching” is a little vague, however: what does it mean for
a virtual camera pointed at a virtual object to match a real camera pointed
at an entirely different real scene?

More precisely, we need to establish a common “world space” coordinate
system between the real scene and the virtual, with the position and ori-
entation (and any other parameters) of the real and virtual cameras with



4 MATCHMOVE 25

respect to this coordinate system being equal. To make a common world
space, we have to have points of correspondance: a set of points in the real
world that correspond to points in the virtual world, whose world space
coordinates must therefore be the same.

4.1 Markers

The points in correspondence between real and virtual scenes have to be
special “landmarks”: we must be able to accurately locate them in the plate
images. For example, a point somewhere in the middle of the air is useless
because there’s no way to easily figure out where it is in an arbitrary image.
A point in the middle of a clean white wall is similarly worthless — it’s
impossible to tell apart from any other point on the wall (at least, without
first figuring out where the edges of the wall are). A point on the edge
of something, where the colour in the image changes sharply between the
two sides of the edge, is better, but still can’t be localized to more than being
somewhere on a line segment or curve in the image. A much more useful
choice is a corner of something, for example where two edges intersect
— particularly corners with a very sharp and large change in colours in
different directions, such as the corners of the squares in a black and white
checkerboard.

Points that we can easily and precisely locate in a plate, and that we use to
solve matchmove or similar problems, are called markers. The two-dimensional
image positions of the markers in the real footage are the primary input
data to matchmove. Let’s call these 2D image positions {~p1, ~p2, . . . , ~pn}:
for n visible markers we get 2n numbers. It’s important to be clear about
what exactly these coordinates are: Normalized Device Coordinates, rang-
ing from (�1,�1) at the bottom left corner of the image to (1, 1) at the top
right corner, are the obvious choice.

There are a couple of ways to determine each ~p
i

. For example, a match-
move artist could manually look through the image and click on where



4 MATCHMOVE 26

they judge the i’th marker to be, recording the click as ~p
i

. Alternatively,
computer vision algorithms (more on this below) could automatically at-
tempt to find it. A combination of manual and automatic methods could
also be used: the artist quickly placing a blob over the rough location of the
marker, and computer vision algorithms optimizing the precise location
within that blob.

The larger problem is figuring out where the markers are in world space,
i.e. their 3D coordinates in “world space”. We’ll denote these three dimen-
sional coordinates as {~x1, ~x2, . . . , ~xn}. There are a few possibilities here too.

The simplest approach (software-wise) to getting the {~x
i

} is from survey
data: in addition to filming the actual footage, the crew can identify good
markers in the scene and measure exactly where they are with respect to
an agreed coordinate system using surveying tools. For example, if a rect-
angular table occupies the centre of the image (on which a digital rendered
object is going to be placed), one corner of the table might be selected as
the world space origin, two of the edges the x and z axes; all four corners
can be taken as markers, and their positions in this coordinate system accu-
rately measured with a measuring tape. Note that keeping track of units is
very important in cases like this: you don’t want to get mixed up between
numbers that indicate metres versus other measured numbers that indicate
centimetres, or inches, or cubits.

A variation on this idea is to artificially add a calibration target to the scene,
an object with good markers on it that has already been carefully mea-
sured. For example, a checkboard with some markings to indicate which
way round it is (or something a bit more sophisticated like CALTag [AHH])
would be a good candidate for a target. This is especially useful in a scene
where there are no obvious natural markers, such as on a uniform grassy
field, or more typically, on a green-screen studio: instead of relying on nat-
ural markers, the crew can add their own. However, it will have to be
removed from the final shot, of course, perhaps by compositing a rendered
object on top of it, or simply masking it out (if it’s on a green screen which



4 MATCHMOVE 27

is going to be removed anyhow).

Finally, in some scenarios it may be impossible to do survey data or add
a calibration target: for example, a fast-moving helicopter shot over the
wilderness. In that case the problem is a lot tougher, and while computer
vision techniques can suggest good likely markers from the images them-
selves, their 3D locations will have to be solved for simultaneously with the
camera parameters: we won’t tackle that problem here.

Assuming either survey data or calibration target, we end up with the
markers providing two sets of point data for the matchmove problem: for
each marker i a 3D world space location ~x

i

and a corresponding 2D image
space projected position ~p

i

.

4.2 The Solve

In the real photo, the “action” of the camera was to project the 3D world
space marker positions {~x

i

} to the 2D image space positions {~p
i

}. We can
model this mathematically the usual way, as a transform T from world
space to Normalized Device Coordinates (without the depth value, which
we don’t know). This transform can be factored into a sequence of simpler
rigid transforms (the model-view matrix which goes from world space to
camera space) and a perspective projection:

T = PperspRz

(✓6)Ry

(✓5)Rx

(✓4)Tz

(✓3)Ty

(✓2)Tx

(✓1). (47)

Here I use Ppersp for the perspective projection, R
z

(✓6) for a rotation by an
unknown angle parameter ✓6 around the local z-axis, T

z

(✓3) for translation
by an unknown distance parameter ✓3) along the local z-axis and so forth.
In essence, this is just like a 6DOF joint, except for the inclusion of a per-
spective transform at the end.

I will assume the perspective projection Ppersp is known. This is an intrinsic
setting of the camera lens system: what the camera’s field of view is.2 It

2For the special case of a tilt-shift camera, Ppersp should also encode where on the image



4 MATCHMOVE 28

could in principle be recovered as another unknown paramter to solve for,
but in practice this is numerically quite ill-behaved (the effect of zooming in
is almost the same as moving the camera towards the scene, so errors in the
data make it very hard to reliably distinguish between perspective effects
and camera translation). Moreover, even if the camera moves during a shot,
the lens is almost always left constant and can separately be measured or
calibrated (i.e. Ppersp can be figured out separately from matchmove).

We are left with 2n equations to solve in 6 parameters,

~p1 = PR
z

(✓6)Ry

(✓5)Rx

(✓4)Tz

(✓3)Ty

(✓2)Tx

(✓1)~x1,

~p2 = PR
z

(✓6)Ry

(✓5)Rx

(✓4)Tz

(✓3)Ty

(✓2)Tx

(✓1)~x2,

...

~p
n

= PR
z

(✓6)Ry

(✓5)Rx

(✓4)Tz

(✓3)Ty

(✓2)Tx

(✓1)~xn,

(48)

where each marker gives two equations (one for the image x coordinate
and the other for the image y coordinate). Thinking of this as a 6DOF joint,
this is obviously just a small variation on IK — and can be solved with
exactly the same regularized nonlinear least squares form, Gauss-Newton,
line search etc. It does tend to be important to start with a good initial guess
for matchmove, as it’s easy to get stuck in some bad local minima far from
the real solution: user hints (such as a rough approximation of the position
of the camera) and heuristics (the camera has to be rotated to be facing the
markers visible in the image, the camera probably is oriented with its image
x axis horizontal in the world) may be necessary.

One issue that is a bit different between matchmove and regular IK is the
nature of the markers. With less than three markers, i.e. less than six equa-
tions, there’s no way the six camera DOFs can be found; geometric con-
sideration shows there are also some degenerate arrangements of markers
which don’t suffice. In some frames, some markers may also be obscured

plane the image was recorded etc. For wide-angle and zoom lenses, P may also include a
nonlinear distortion to account for “barrel” or “pincushion” distortions in the real camera
that deviate from the perfect perspective transform we usually assume in computer graph-
ics. We’ll ignore these cases here.



4 MATCHMOVE 29

and impossible to locate. Finally, whether artist or algorithm is locating the
markers in the images there is always a possibility there can be errors in
the ~p

i

. (Errors in the ~x
i

are also possible, of course, but less likely if care
is taken in measurement.) All of this argues for using a lot more markers
than the three which are strictly necessary. In particular, least squares “av-
erages” across the data points in some sense, hopefully reducing the impact
of errors.

Having said that, not all errors are equal. Least squares does a good job
handling small and unbiased perturbations in the ~p

i

by, say, less than a
pixel. Occasionally, however, an artist’s hand might twitch and click a
massively wrong point, or a computer vision algorithm will fail dramat-
ically and locate a marker far from where it is — or even switch two marks
around. These wild data points are called outliers, and basically encode no
useful information at all: it’s better to take them out of the problem rather
than risk them screwing up the least squares solution in an unpredictable
way. The problem, however, is how to identify which points are outliers
and which are valid.

The RANSAC algorithm is a popular solution to this problem in general.
Rather than solve the least squares problems with all the data points, only
a small randomly selected subset are used. The solution (camera transform
in this case) that is found is then checked against the remaining data points:
if a large enough fraction agree with only a very small error, we trust
that the subset managed to avoid outliers — then discard any points that
strongly disagree, and solve the problem again with all the good points.
On the other hand, if the solution doesn’t agree well with most data points,
we try again with a new randomly selected subset. RANSAC can run for
many iterations, keeping a record of the closest fit found (with an accept-
ably small number of outliers thrown out).



REFERENCES 30

References

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKen-
ney, and D. Sorensen. LAPACK Users’ Guide. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, third edition,
1999.

[AHH] Bradley Atcheson, Felix Heide, and Wolfgang Heidrich.

[GMHP04] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zo-
ran Popović. Style-based inverse kinematics. ACM Trans.
Graph. (Proc. SIGGRAPH), 23:522–531, 2004.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations
(Johns Hopkins Studies in Mathematical Sciences)(3rd Edition). The
Johns Hopkins University Press, 3rd edition, 1996.

[NW99] J. Nocedal and S.J. Wright. Numerical optimization. Springer
series in operations research. Springer, 1999.


