
3 NUMERICAL OPTIMIZATION 15

3.2 Line Search

The topic of approximately optimizing with respect to a single variable in
the context of a higher dimensional problem falls under the topic of line
search. The “line” in the name refers to the possibility of optimizing along
any line in the parameter space, not just parallel to the coordinate axes as
we do in Cyclic Coordinate Descent.

We generally set up line search with a current guess ~✓ and a search direction
vector ~p (which in Cyclic Coordinate Descent will just be one of the axes:
~p = (1, 0, . . . , 0) for example), then approximately solve for a step length ↵:

min

↵

f(~✓ + ↵~p). (28)

Phrasing it this way will let us re-use line search for other optimization
algorithms that use non-axis-aligned search directions.

Our general goal is to find a step length ↵ that is reasonably close to the
optimal step length, and in particular will advance us towards the final
solution. This is by no means a simple property to guarantee without more
knowledge of, or restrictions on, the objective function f . Many line search
methods make use of the derivative of f , for example, to figure out what a
sufficiently good reduction in f(x) is to guarantee eventual convergence.

We’ll look at a simple and reasonably effective line search method which
doesn’t use the derivative, with the caveat that for some badly-behaved
objective functions it may well fail to give adequate improvement. In fact,
even with a perfect line search method, Cyclic Coordinate Descent is known
to fail on certain classes of objective functions; we’ll rely on the IK problems
we encounter to be well-behaved enough that this isn’t an issue.

Our simplest strategy is backtracking. We will start off with an initial step
size ↵0. It might be a sensible default derived from the nature of the prob-
lem, such as 30� for an angle or half the length of a limb for a translation; it
could also be the last successful step size for this variable from a previous
line search.

3 NUMERICAL OPTIMIZATION 16

If f(~✓ + ↵0~p � f(~✓), we conclude the step is too large, and scale it back
by some constant ⌧ such as 1/2: ↵1 = ⌧↵0, and try again until we find a
step size that reduces the value of f—or give up after a certain number
of iterations because the step size has become small enough that we can
conclude we are already at a minimum.

On the other hand, if the first step already provides some reduction, f(~✓ +
↵0~p < f(~✓), it’s worth exploring if a larger step size is possible (to get us
to the minimum faster). We thus try scaling up the step size by a similar
constant such as 2: ↵1 = ↵0/⌧ . As long as we continue to find even smaller
values of f we keep going; as soon as we find a step with a larger f than
the previous step, we stop and use the previous step.

This must work as long as ~p is a “descent direction”, i.e. that the derivative
of f along ~p at ✓ is negative, so locally f is decresing in this direction. In
particular, this means that once the step size has been scaled down small
enough, we have to get some reduction in f . For Cyclic Coordinate De-
scent, however, we don’t know this: it could be that f is increasing along
~p. In that case we should interleave the search along ~p with a search along
the opposite direction �~p (or equivalently with negative step sizes) until
we do find a reduction in f (or give up after a fixed number of iterations,
concluding we are already at a local minimum).

There are many ways this can be potentially improved. For example, the
backtracking search can be extended to arrive at a “bracketing” of a mini-
mum, finding three step sizes where the value of f is smallest at the mid-
dle of the three. Assuming f is smooth and these steps are close together,
f should be accurately approximated by fitting a quadratic through those
three points; finding where the minimum of that quadratic lies gives hope-
fully an even better step size. (Indeed, if f happens to be a quadratic poly-
nomial, this lets us jump to the exact answer.)

3 NUMERICAL OPTIMIZATION 17

3.3 When to Stop

How many iterations of Cyclic Coordinate Descent, or any other method,
are enough?

From a practical perspective, we probably should always have a maximum
number of iterations allowed. If convergence is particularly slow for some
unknown reason, it’s generally better to stop early and alert the user to the
problem rather than hang for some arbitrary long time, or even indefinitely.
This might indicate the problem is ill-posed, for example, or that the IK
solve is jammed in some degenerate configuration. The user or a higher
level routine could then “nudge” the solve, perhaps, by adding a random
perturbation to the initial guess and trying again.

Ideally, however, we will arrive at or close enough to a minimum much
faster than that, and should be able to quit early. For Cyclic Coordinate
Descent, if all the line searches in a sweep report no progress was possible,
we clearly are at an impasse and should stop; also if all the final step sizes
in a sweep are below some threshold (e.g. the point where there is no visual
change in the solution) we are probably as far as we can get.

Stopping at a point where the algorithm can no longer progress doesn’t
guarantee we are at a minimum unfortunately. For example the function
f(x, y) = xy +

1
4(x

4
+ y4) is zero at the origin (x, y) = (0, 0), and only

increases along the x and y axes from the origin. However, the actual mini-
mum of �1

2 occurs at (1,�1) and (�1, 1). Cyclic Coordinate Descent would
be stuck at the origin, which is a stationary point (the first derivatives are
zero) but not a minimum—though a random perturbation would get it un-
stuck again.

Even if we do converge to a local minimum, where f does not decrease in
any direction, it is not guaranteed to be a global minimum, where f takes on
its actual minimum value.

Having said that, guaranteeing arrival at a global minimum, and not get-

3 NUMERICAL OPTIMIZATION 18

ting stuck at a non-minimum stationary point, is in general tough and al-
most certainly requires more information about f such as it being “convex”.
For the purposes of IK, we will be content with some combination of testing
out different objective functions (penalties and regularizations), occasional
random perturbation, and user intervention in particularly difficult scenar-
ios.

3.4 Least Squares and Gauss-Newton

While Cyclic Coordinate Descent with backtracking is a simple and practi-
cal method for many small problems, it can be slow to converge. Consider
this problem, for example:

min

✓1,✓2

5(✓1 + ✓2 � 1)

2
+ (✓1 � ✓2 � 3)

2. (29)

Here the main “valley” of f is in the direction (1, 1), at a 45

� angle from
the coordinate axes. Cyclic Coordinate Descent steadily zigzags along the
axes towards the minimum, in this case, instead of going along the main
downhill direction.

In this case, the objective is just a quadratic, which means its gradient is a
linear function:

@

@✓1
: 10(✓1 + ✓2 � 1) + 2(✓1 � ✓2 � 3),

@

@✓2
: 10(✓1 + ✓2 � 1)� 2(✓1 � ✓2 � 3).

(30)

Finding where the gradient is zero amounts to solving a simple linear sys-
tem of equations:

12✓1 + 8✓2 = 16,

8✓1 + 12✓2 = 4.
(31)

The exact solution is just (2,�1). If we had code which could “see” the
coefficients of the quadratic, it could jump straight to the minimum without
iterating at all.

3 NUMERICAL OPTIMIZATION 19

Obviously some of the functions we want to optimize aren’t just quadrat-
ics, so we can’t generally provide coefficients for the code to work with.
However, for the sake of generating a good guess at the minimum we can
approximate f with a quadratic “model function”, and minimize the model
instead of f . This is the essence of Newton’s method, probably the single
most important algorithm in optimization.

Newton’s method itself requires knowing both the derivative and second
derivatives of f to form a quadratic Taylor series to approximate the func-
tion near a guess, which is then minimized to find the next guess. In our
IK examples, we can get away with only needing first derivatives by using
the least-squares structure of our problems. This leads to what is known as
the Gauss-Newton method.

Recall our least-squares form is

min

~

✓

k~r(~✓)k2, (32)

where ~r(~✓) is the “residual” function. We’re going to use the derivative of
~r, called the Jacobian. Suppose ~r is an m-dimensional vector function, and ✓

is an n-dimensional vector. The Jacobian J is then an m⇥ n matrix-valued
function:

J(~✓) =

0

BB@

@r1
@✓1

@r1
@✓2

· · · @r1
@✓n

...
...

@rm
@✓1

@rm
@✓2

· · · @rm
@✓n

1

CCA . (33)

Although it’s harder to visualize in multiple dimensions, the Jacobian is
just a generalization of the “slope” of a function. Just like we can approxi-
mate a smooth function around a point with a line tangent to the function—
i.e. a line with slope equal to the derivative—we can approximate ~r(✓) near
a point using a linear function with the Jacobian:

~r(~✓ + d~✓) ⇡ ~r(~✓) + J(~✓)d~✓. (34)

Taylor’s theorem tells us this is accurate to within O(kd~✓k2).

3 NUMERICAL OPTIMIZATION 20

If we’re at guess ✓, we can compute the Jacobian and approximate ~r with
this. Plugging this approximation into the minimization gives a least-squares
problem again:

min

d

~

✓

���~r(~✓) + J(~✓)d~✓
���
2
. (35)

The crucial improvement is that here ✓ is fixed—it doesn’t enter into the
minimization. The new approximate residual is linear in the variable d~✓, so
this is a linear least-squares problem: the objective is indeed just a quadratic,
so we can solve it exactly. Our new guess is

~✓new = ✓ + d~✓. (36)

We can continue with the next iteration from this point, recomputing the
Jacobian etc., and stopping when the iterates no longer change significantly.

How exactly do we solve this easier subproblem? There are several ap-
proaches of varying sophistication and complexity, but the simplest is called
the normal equations approach. For a column vector x the norm squared
kxk2 is just xTx using the transpose, so

���~r(~✓) + J(~✓)d~✓
���
2
=

⇣
~r(~✓) + J(~✓)d~✓

⌘
T

⇣
~r(~✓) + J(~✓)d~✓

⌘

= ~r(~✓)T~r(~✓) + 2d~✓TJ(~✓)T~r(~✓) + d~✓TJ(~✓)TJ(~✓)d~✓.
(37)

Simplifying this, with ~r instead of ~r(~✓) and J instead of J(~✓), finally leads
to:

k~rk2 + 2d~✓TJT~r + d~✓TJTJd~✓. (38)

To find where this is at a minimum, we can take the gradient with respect
to d~✓:

2JT~r + 2JTJd~✓. (39)

(If you’re not used to working with vector calculus and linear algebra, this
step might be a bit hard to take in one go, but you can verify it by expanding
out the matrix and vector products in terms of sums over indices, then
differentiating with respect to each entry individually.) Once we have the
gradient, we can solve for when it is zero:

(JTJ)d~✓ = �JT~r. (40)

3 NUMERICAL OPTIMIZATION 21

The square matrix JTJ is naturally symmetric, and can be efficiently solved
with the Cholesky factorization for example (see a numerical linear algebra
reference such as Golub and van Loan’s book [GVL96], and standard soft-
ware libraries such as LAPACK [ABB+99]).

Basic Gauss-Newton can be shown to converge rapidly to the solution if
the initial guess is close enough, but it can run into troubles if the initial
guess is too far away. Therefore it’s a good idea to combine Gauss-Newton
with a line search routine. If we choose the search direction to be the Gauss-
Newton step itself, ~p = d~✓, then it’s not difficult to prove it must be a de-
scent direction; the natural first guess at a step size should be ↵ = 1 (which
is perfect if the problem is actually linear least-squares). The combination of
Gauss-Newton and line search, applied to problems that have been appro-
priately regularized as discussed earlier, is extremely robust and generally
works very well.

3.5 Computing Derivatives

The main difficulty for Gauss-Newton tends to be the calculation of the
derivatives in the Jacobian matrix. In principle this is a simple affair, of
course, but writing the code that can do it for a FK hierarchy constructed
interactively by a user is a bit daunting at first glance. Let’s look at it in
detail.

Consider a point on some bone in a FK hierarchy. Suppose its coordinates
in the bone’s local coordinate system are ~p. The FK tree traversal gives us
the world space coordinates ~x as a product of transformations applied to ~p:

~x = T0(✓0)T1(✓1) . . . Tn

(✓
n

)~p. (41)

Here I have separated out multi-parameter joints, and the transformation
of the FK root with respect to world space, into products of single parame-
ter transformations. All joint parameters are labeled with ✓, both rotations
and translations along various axes. For simplicity of notation I’ve also

3 NUMERICAL OPTIMIZATION 22

ignored non-parameterized transformations (like fixed rotations or trans-
lations that define where a joint is on a bone, and should never be changed
for regular motion) as transformations with a single parameter—you could
also view them as parameterized transformations in the list with a dummy
parameter which we ignore in subsequent processing. Obviously the full
differentiation code will need to multiply them in as appropriate.

In this form, the different partial derivatives of the Jacobian are refreshingly
simple:

@~x

@✓
i

= T0(✓0) · · ·Ti�1(✓i�1)
@T

i

(✓
i

)

@✓
i

T
i+1(✓i+1) . . . Tn

(✓
n

)~p. (42)

This means that for column i of the Jacobian, i = 1, . . . , n, we simply use
the regular FK formula but with the i’th transformation T

i

(✓
i

) replaced by
its partial derivative with respect to ✓

i

.

The derivative of a single transformation matrix is generally pretty easy.
For example, here’s a matrix which translates along the x-axis:

T (✓) =

0

BBBB@

1 0 0 ✓

0 1 0 0

0 0 1 0

0 0 0 1

1

CCCCA
. (43)

Its derivative is just:

@T (✓)

@✓
=

0

BBBB@

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

1

CCCCA
. (44)

Here’s a matrix which rotates around the z-axis:

R(✓) =

0

BBBB@

cos(✓) � sin(✓) 0 0

sin(✓) cos(✓) 0 0

0 0 1 0

0 0 0 1

1

CCCCA
. (45)

3 NUMERICAL OPTIMIZATION 23

Its derivative is just:

@T (✓)

@✓
=

0

BBBB@

� sin(✓) � cos(✓) 0 0

cos(✓) � sin(✓) 0 0

0 0 0 0

0 0 0 0

1

CCCCA
. (46)

Note that in both cases, the derivative of the transformation matrix has a lot
of zeros, including along the bottom row: these aren’t regular affine trans-
formations any more. When you apply them to a point, which normally
has a fourth (homogeneous) coordinate of one, you get a vector, with fourth
coordinate equal to zero. You shouldn’t normalize the result—simply drop
the zero fourth coordinate to get the derivative vector in 3D coordinates.
This makes sense since the derivative of a point is a direction it moves in
when a parameter is adjusted, not an actual location or point itself.

With this in mind, we could easily compute each column of the Jacobian
independently. However, it’s worth realizing that any two columns actu-
ally share a lot of factors: columns i and j only differ at T

i

and T
j

. It is
inefficient to recompute all those products of transforms over and over. A
useful mental challenge is to write a more efficient algorithm for evaluat-
ing the Jacobian that shares the computation of intermediate products be-
tween all columns (hint: in the first pass over all columns, compute only the
T
i+1 · · ·Tn

~p final part of the answer for column i; in a second pass multiply
in the derivatives for all columns; in a third pass complete the calculation
of all the columns).

