
2 INVERSE KINEMATICS 9

2.3 Making General IK Well-Posed

The trick of turning a potentially ill-posed system of equations into a well-
posed regularized least-squares minimization problem is one of the most
powerful, and commonly used, methods in many fields. We can use it
directly for Inverse Kinematics.

Turning to our earlier two limb example, we can resolve the problem of a
solution not existing by asking for the end-effector to be as close as possible
to the target instead of actually at it:

min

✓,�

���
�
x(✓,�)� x, y(✓,�)� y

����
2
, (17)

where the functions x(✓,�) and y(✓,�) are the coordinates of the end-effector
as a function of the joint angles—see equation (2).

Now we know there will always be a solution—and a fairly natural one
at that (put the end-effector as close to the target as possible)—but we still
have the uniqueness issue. If (✓,�) is a solution, then (

1
2⇡ � ✓,��) is an

equally good solution. To get a well-posed problem we have to bias it one
way or the other.

One possibility mentioned before is to put in an additional constraint, like
� � 0. Depending on the method we use to solve the final optimization
problem, an inequality constraint like this may or may not be easy to in-
corporate. If it does pose trouble, we can again take the regularization ap-
proach, or more specifically include a penalty term to steer the solver away
from the “bad” solution. Define the negative part of � as

��
=

(
0 : � � 0

|�| : � < 0

. (18)

We can penalize solutions with a negative � by again including a small ✏
constant:

min

✓,�

���
�
x(✓,�)� x, y(✓,�)� y

����
2
+

1

✏
|��|2, (19)

2 INVERSE KINEMATICS 10

In fact, there’s still a problem for well-posedness if a 6= b and the target is
(0, 0), but other than that one problem spot which we can probably safely
ignore, we’re good.

To the general case: we are faced with a set of nonlinear equations, placing
an end-effector in some desired position (for example) by solving for ap-
propriate joint parameters. We can express that as a vector-valued function
of the joint parameters being zero:

~r(✓1, . . . , ✓n) = ~
0. (20)

Here I’ve used ✓
i

for the i’th joint parameter to emphasize they are often an-
gles, but this is not a restriction in general: they could be translations along
certain axes, for example. The exact form of ~r is determined by Forward
Kinematics.

Our first trick is to replace this with a (nonlinear) least-squares problem
that is bound to have a solution even if it is not unique:

min

✓1,...,✓n

k~r(✓1, . . . , ✓n)k2. (21)

We may then regularize this in some way to avoid multiple solutions. For
example, penalizing large angles with some tiny parameter ✏:

min

✓1,...,✓n

k~r(✓1, . . . , ✓n)k2 + ✏k~✓k2. (22)

Here I’m using ~✓ as an abbreviation for the vector of all joint angles: ~✓ =

(✓1, ✓2, . . . , ✓n). Since we phrased the regularization as a sum of squares
(the Euclidean norm of ~✓ squared), we still have a least-squares problem!

Another common regularization that comes up in IK for animation, or in-
teractive use, is to penalize joint parameters that deviate too much from the
last solution (at the previous frame, or the previous mouse position, etc.).
If ~✓old is the previous solution, we can instead minimize:

min

✓1,...,✓n

k~r(✓1, . . . , ✓n)k2 + ✏k~✓ � ~✓oldk2. (23)

3 NUMERICAL OPTIMIZATION 11

More advanced ideas along this line are possible, for example Grochow et
al.’s idea for biasing the IK solution to stay close to known “good” poses
extracted from motion capture of real movement [GMHP04].

Further constraints on IK solutions, such as joint angle limits (e.g. the elbow
isn’t allowed to bend backwards) or non-penetration of the limb with the
body, can be placed as actual hard constraints on the least-squares problem,
which formally might look like

min

~

✓: ~C(~✓)�~0
k~r(✓1, . . . , ✓n)k2 + ✏k~✓ � ~✓oldk2, (24)

using a possibly vector-valued constraint function ~C(

~✓). The statement
~C(

~✓) � ~
0 here means that each element of the vector-valued function ~C

has to be non-negative separately. We call these hard constraints because
the problem, as stated, requires them to be exactly true at a solution.

Sometimes this greatly complicates methods for solving the problem, or
puts us back at the problem of no solution existing because the constraints
are inconsistent—for example, ✓1 � 0 and �✓1 � ⇡ � 0 can’t both be true.
In this case, it may be better to make them soft constraints, again adding a
penalty term to the objective function (what it is we are trying to minimize)
like we did with regularization, so as to make sure the solution we get is
unlikely to violate the constraints too much. For example, using another
small parameter µ > 0, and again the notation c� = max(0,�c), we could
solve:

min

~

✓

k~r(✓1, . . . , ✓n)k2 + ✏k~✓ � ~✓oldk2 +
1

µ
[

~C(

~✓)�]2. (25)

As long as µ is small enough (so 1/µ is big enough) this extra penalty term
makes sure the solution can’t violate ~C(

~✓) � 0 too much.

3 Numerical Optimization

Once we have set up a reasonable optimization problem for IK, we have to
write code to solve it. Occasionally it can be solved analytically—perhaps

3 NUMERICAL OPTIMIZATION 12

using a computer algebra package to help with differentiating and solving
the resulting equations—but most likely that will be too difficult especially
if the form of the problem isn’t known in advance (it’s specified by the artist
during runtime).

However, we don’t need an exact solution for animation. As long as we
can efficiently produce a set of joint parameters which come close enough
to solving the problem, so that visually there is no obvious error, we’re fine.
In fact, since we almost certainly will be using floating-point arithmetic
which can’t exactly represent the solution due to limited precision, there’s
usually no point at all in worrying about exactness—only efficiency.

The general idea of numerical optimization, algorithms for finding a “good
enough” solution to a minimization problem, is to construct a sequence of
guesses that eventually will converge to a minimum, stopping at a guess
that is found to be good enough. The big questions are how to get from one
guess to the next (hopefully better guess), what the initial guess should be,
whether the sequence of guesses is guaranteed to eventually converge to
a minimum (i.e. if you leave the algorithm running long enough, you can
achieve any level of accuracy you desire), and when to stop and call it good
enough.

Optimization is a gigantic topic in its own right, and of immense use to a
gigantic number of fields, not just IK. Rigourously proving convergence, or
even analyzing the problem well enough to understand some of the more
sophisticated algorithms, is far out of scope for this course. However, for
the small and reasonably well-behaved problems we face, there are several
simple and practical algorithms that are good enough. For more on the
subject, Nocedal and Wright’s book is an excellent resource [NW99].

3.1 Cyclic Coordinate Descent

Before worrying about when to stop the iteration, let’s look at one of the
simplest and most popular algorithms for IK: Cyclic Coordinate Descent,

3 NUMERICAL OPTIMIZATION 13

sometimes abbreviated to CCD, and sometimes also called Gauss-Seidel.

Let’s simplify the notation a bit first: call the objective function (again, what
we are trying to minimize) just f(✓1, . . . , ✓n). It may have several nonlinear
sum-of-squares terms as before, or be constructed some other even more
complicated way, but for the purposes of this method we don’t need to
know anything about f : it can be just a black box, a bit of code we can call
to evaluate the objective and that’s all.

Cyclic Coordinate Descent works by starting with an initial guess—perhaps
the solution from the previous frame in an animation or the previous mouse
position in an interactive program, or perhaps just all zeros if there’s noth-
ing better—and adjusting one parameter at a time to steadily decrease the
value of f . That is, the first substep approximately solves:

✓new
1 = argmin

✓1

f(✓1, ✓2, . . . , ✓n), (26)

where ✓2, . . . , ✓n are held fixed. Once we’ve found a new value for ✓1 that
decreases f reasonably, or discovered ✓1 is already as good as it gets, we
then move on to optimizing ✓2 with the other parameters held fixed:

✓new
2 = argmin

✓2

f(✓new
1 , ✓2, . . . , ✓n). (27)

Be careful here—I’m using the new value ✓new
1 found in the first substep,

but it’s fixed as only ✓2 is allowed to vary here. We proceed on like this,
optimizing ✓3, . . . , ✓

n

separately in sequence. That is one sweep of Cyclic
Coordinate Descent.

After the first sweep, we are probably not yet at the solution: it may well
be that after modifying ✓2, . . . , ✓

n

, there is now a better value for ✓1 that
can decrease f even further. So we proceed with another sweep, and then
another, and so on until we think we’re close enough to the solution. The
reason for the name of this algorithm should be clear now: we are cycling
through the coordinates of the parameter vector (✓1, . . . , ✓

n

) trying to “de-
scend” in the value of f .

3 NUMERICAL OPTIMIZATION 14

The general term “descent”, which comes up a lot in optimization algo-
rithms, is best understood if you plot the function f over the domain of
~✓, thinking of f(~✓) as the “height” of the point ~✓ in the domain. The opti-
mization algorithm starts at some point on this plot (the initial guess), and
attempts to find a sequence of points that descend into a minimum of f .
Cyclic Coordinate Descent finds these points by moving parallel to each
coordinate axis (of ~✓) in turn, cycling through the axes again and again, but
of course many other strategies are possible.

Every substep in a sweep of Cyclic Coordinate Descent requires approx-
imately solving a minimization problem in a single variable. It can be
very approximate, since we’ll have to take multiple sweeps anyhow, but
we have to make a sufficient improvement for the method to be able to
work. This is still a tricky problem, but a lot easier to tackle when we only
have one variable to deal with. Especially for IK, it is also often the case
that the objective function can be evaluated more efficiently if you know
in advance that only one parameter will be modified inside a substep—for
example, you can precalculate the transformation up to the joint angle be-
ing changed, and the transformation after that joint in the hierarchy, and
then as the joint changes only have O(1) work to do in determining the
end-effector instead of a full FK tree traversal.

