
Inverse Kinematics and Optimization

Robert Bridson

October 7, 2011

1

1 PROBLEMS WITH FORWARD KINEMATICS 2

1 Problems with Forward Kinematics

Putting what we have seen so far together, we have the makings of a basic
keyframe animation system: we can rig a model with a skeleton, pose it at
keyframes using Forward Kinematics, interpolate the motion through time
using motion curve splines, skin it at every frame, and set up cameras for
the final rendering.

However, the FK approach in particular isn’t always so convenient. A clas-
sic example is provided by the problem of footskate in walking characters.
When a foot is in contact with the ground while walking we expect it to
stay fixed in place due to friction; if it erroneously moves in a visible way
we might interpret the artifact, namely footskate, as being the actual result
of a slippery or spongy surface. It can be very distracting.

When animating a walking character with FK one node in the tree has to be
the root, and in particular at least one of the feet will not be the root, since
there can only be one root; for simplicity we’ll assume the hips are the root
as usual. The animator directly specifies the motion of the root in the world
with motion curves, but the motion of other nodes in the FK tree is a more
complicated function of the motion of higher nodes in the tree and joint
parameters.

To avoid footskate in FK, the animator has a tedious task of carefully ad-
justing hip, knee and ankle joint angles in response to the motion of the root
so that a foot planted on the ground stays fixed (i.e. the complicated com-
position of the root’s motion curves and the animated joint angles along
the leg balances out to a constant).

Related problems happen with other types of contact, such as hands grasp-
ing objects like doorknobs. Simply switching the root temporarily to the
foot (or hand, or whatever) to make maintaining a solid contact easy for the
animator isn’t possible when more than one contact is present—for exam-
ple, a character standing on two feet opening a door with one hand while

2 INVERSE KINEMATICS 3

keeping their other hand on a railing.

2 Inverse Kinematics

Figuring out the joint angles needed to maintain a contact essentially amounts
to solving a set of equations—which is perfectly suited for automatic solu-
tion by the computer instead of manual artist intervention. This is the pro-
cess of Inverse Kinematics (IK): automatically determining joint parameters
in a skeleton to satisfy constraints on the output. Whereas FK computes
the frames of nodes in the tree from the joint parameters, IK is the inverse,
computing the joint parameters from requirements on the frames of nodes
in the tree.

IK is useful both as a specific animation technique—we can designate that
for a time interval a certain condition must hold true and require the com-
puter to calculate the necessary joint parameters for that duration—and
for interactive control over posing—with IK it’s possible for an artist to di-
rectly drag a character’s hand, say, to where it should be for a keyframe
pose without having to tediously adjust all the individual joints along the
way instead.

IK has a rich history in robotics, where a typical problem might be what pa-
rameters to send to joint servo motors to place the end of a robotic arm in a
desired position and orientation. From this connection we get terminology
such as end-effector for a node at the leaves of the FK tree which we wish to
control by IK, such as the tool at the end of a robotic arm.

There are two main approaches to IK: special analytical solutions, and nu-
merical methods for approximately finding a solution. Both have their
place.

2 INVERSE KINEMATICS 4

2.1 Analytical Solutions

In some standard scenarios, it’s possible to analytically derive what joint
angles must be to achieve the desired result.

For example, take a look at a typical limb restricted to two dimensions for
simplicity. At the base of the limb (the hip or shoulder) there is a joint
with one angle parameter ✓, then a segment (upper leg or arm) of length a

extending to another joint (knee or elbow) with angle parameter �, then an-
other segment (lower leg or forearm) of length b ending at the end-effector
(ankle or wrist) we wish to control.

Relative to the base, the coordinates of the intermediate joint are

�
a cos ✓, a sin ✓

�
. (1)

Taking into account the ✓ rotation of the first segment’s frame, the coordi-
nates of the end-effector are

�
a cos ✓, a sin ✓

�
+

�
b cos(✓ + �), b sin(✓ + �)

�
. (2)

It should be noted this assumes that at rest, when ✓ = � = 0, the limb
extends straight along the positive x-axis of the base coordinate system.

Given a desired position (x, y) for the end-effector in the base coordinate
system, the IK problem amounts to solving two equations,

x = a cos ✓ + b cos(✓ + �)

y = a sin ✓ + b sin(✓ + �),

(3)

for the two unknown joint parameters ✓ and �. Unfortunately, this system
is heavily nonlinear, so it’s not trivial to solve.

The clever route is to first figure out �, matching the distance L between
the base and desired position,

L

2
= x

2
+ y

2
, (4)

2 INVERSE KINEMATICS 5

with what the cosine law tells us the actual distance between the base and
the end-effector must be:

a

2
+ b

2 � 2ab cos(⇡ � �). (5)

Noting cos(⇡ � �) = cos�, we can solve this to get

� = cos

�1

✓
L

2 � a

2 � b

2

2ab

◆
, (6)

if it’s possible. Obviously if L > a + b no solution can exist (the target is
too far for the limb to reach even when fully out-stretched with � = 0);
likewise if L < |a � b| a solution is impossible (the target is too close for
the mismatch in segment lengths, even when the limb is completely tucked
back in).

If you’re thinking carefully about your trigonometry, you’ll notice there are
actually two different angles for � that provide the same cosine: the solu-
tion is not unique. Perhaps a physical constraint, such as the elbow or knee
only being allowed to bend in one direction, can resolve the ambiguity.

We can then use the sine law to determine the angle between the first
limb segment and the line between the base and the target,

sin�

L

=

sin(⇡ �)

b

, (7)

giving that angle as

 = sin

�1

✓
b

L

sin�

◆
, (8)

where we also used the identity sin(⇡ �) = sin .

Finally, the sum ✓ + is the angle pointing from the base to the target,
which we can compute as

tan(✓ +) =

y

x

, (9)

whence we get
✓ = tan

�1 y

x

� . (10)

Obviously this formula would need to be modified slightly when x = 0.

2 INVERSE KINEMATICS 6

2.2 Well-Posedness

The analytical approach is great, once the solution is fully worked out as
above, but for general animation software that can support arbitrary skele-
tons there are several big problems in extending this:

• How can the program figure out a solution strategy for an arbitrary
type of skeleton?

• How can we handle nastier constraints than simply placing an end-
effector at a particular position, such as avoiding self-intersections in
the skeleton?

• How do we deal with non-unique solutions?

• What do we do if there is no solution?

Although the capabilities of symbolic computer algebra shouldn’t be un-
derestimated, seeing as we only need numerical solutions accurate to within
visual tolerances, there is a better way forward using techniques from sci-
entific computing which will help with the first two problems.

But first let’s deal with an even more fundamental problem: what to do
about the non-unique or non-existant solutions. The concept of a well-posed

problem from applied math is needed here.

A well-posed problem is one where we can mathematically guarantee that
a single unique solution exists, and that it is stable to perturbations—meaning
the solution only changes a small amount if we change the data of the prob-
lem a small amount. A problem that isn’t well-posed is called ill-posed, and
probably is pointless to try to “solve”: if no solution exists, you can’t solve
it; if many solutions exist you don’t know which to pick; if the solution can
change wildly under tiny perturbations of the input data, and you don’t
know if you measured the input data exactly, then you can have no confi-
dence that you’ve found a valid solution.

2 INVERSE KINEMATICS 7

Often an ill-posed problem can be easily changed into a well-posed prob-
lem by adding or relaxing requirements. For example, finding x so that
x

2
= y for a given real number input y is ill-posed because there are usu-

ally two solutions. We can fix that by requiring that the solution x be non-
negative—then there’s at most one solution. However, we are still ill-posed
because for negative y there’s no non-negative solution (only complex-
valued solutions). If we add the restriction that y � 0, then we finally have
a well-posed problem—you can verify that x =

p
y is the unique solution,

and it is a continuous function of the input data y.

Another common strategy for making problems well-posed is to phrase
them as optimization problems, looking for the best possible “solution” even
if it doesn’t perfectly solve the original problem. For example, solving a real
2⇥ 1 linear system for an unknown x,

a

b

!
(x) =

c

d

!
, (11)

is ill-posed. If c/a 6= d/b, or a = 0 but c 6= 0, or b = 0 but d 6= 0, there is
no solution. Rather than add requirements on the data, we could instead
change the problem to look for the optimal choice of x that comes as close
as possible to satisfying both equations, say in terms of the Euclidean norm:

min

x

�����

a

b

!
(x)�

c

d

!�����

2

. (12)

Remembering that the Euclidean norm squared of a vector (u, v) is just the
sum of the squares of the entries,

k(u, v)k2 = u

2
+ v

2
, (13)

this sort of minimization problem is often called least-squares. If there was
an exact solution to the original problem, x = c/a = d/b, it’s still the unique
solution to the least-squares problem—it succeeds in taking the Euclidean
norm all the way down to zero. As an exercise, you can work out that the
solution in the general case is

x =

ac+ bd

a

2
+ b

2
. (14)

2 INVERSE KINEMATICS 8

Unfortunately, we’re still not quite well-posed: what if a = b = 0? Obvi-
ously our solution formula breaks down; any x is as good as any other, i.e.
there are infinitely many solutions.

We can finally fix the problem by saying, for example, we want the minimum-
norm x that minimizes the least-squares problem—so if a = b = 0, the
unique solution is x = 0. Alternatively we can regularize the problem,
changing it slightly, to avoid the breakdown in an easier way. Introduce
a tiny parameter ✏ > 0, and instead pose:

min

x

�����

a

b

!
(x)�

c

d

!�����

2

+ ✏kxk2. (15)

This is at last a well-posed problem, which has the unique solution

x =

ac+ bd

a

2
+ b

2
+ ✏

(16)

which does vary continuously with the input data, no matter what. It bal-
ances staying close to both equations when they are well defined with keep-
ing a small norm answer x when the equations vanish.

This last example is a bit contrived—we rarely have exactly two linear
equations with one variable—but is the perfect model for what we’re about
to do with more nonlinear equations and more variables.

