
6 CAMERA MOVES 17

6 Camera Moves

By this point, we have all the basic tools for animating objects in a scene.
Rendering the animation—whether for the final shot or for interactive vi-
sualization as the animator works—needs a little more though: lights and
cameras.

We won’t dwell on lighting design, but simply note that placing and an-
imating lights in a scene generally uses the same basic tools of motion
curves and transforms as Forward Kinematics. There probably is more to
be done here (in modeling software) on the interactive visualization side:
perceptual studies have shown that shadows, for example, can play a big
role in helping user perception of shape, size and relative placement. Due
to the expense and complication of rendering shadows in real-time most
modeling software doesn’t bother with them, yet, but maybe should.

6.1 Animated Cameras

Animating a shot camera, through which the final result will be rendered,
is much the same as animating any object: though there’s a lot to worry
about artistically, cinematographically, the most basic tools of rigid trans-
forms aren’t very different. People generally do have a strong sensitivity to
upwards orientation—cameras that have “rolled”, so that the image’s hor-
izontal axis is no longer aligned with the 3D world’s notion of being hor-
izontal, send an enormously powerful message to the viewer that things
are off-balance or are being artistically framed for some extremely impor-
tant reason, so there better be an important reason to do this. Therefore the
Euler angle model of camera rotation generally uses a rotation around the
world’s y axis and a rotation around the camera’s x axis, thus maintaining
the sense of proper horizontality. A final roll angle around the camera’s z

axis should be left at zero unless really needed.

An alternate method of posing a camera that can be more intuitive in many



6 CAMERA MOVES 18

cases is the look-at model, which you should have seen in an earlier graphics
course. Here the position of the camera ~p, the position of a target ~t which
the camera should be pointing at, and the world’s y-axis are given, from
which the rigid transform of the camera can be computed. In particular,
the camera’s z axis should be ~p�~

t normalized to unit-length3, the camera’s
x axis can be computed from a normalized cross-product of that with the
world’s y axis, and the camera’s y axis computed from a final cross-product
to be orthogonal. In an animation setting, the camera position and the tar-
get can then be separately animated with motion curves. (This actually
touches on the subject of the next chapter, specifying motion in alternate
ways based on the output instead of simple parameterized input. . . )

The biggest difference from camera motion curves and regular object or
light motion curves is how important smoothness usually is. While oc-
casionally a jerky camera is artistically valid—to communicate a sense of
speed, disorientation, or impact, or perhaps to simulate amateur hand-held
camera footage—it is not something to use casually. Apart from objects that
are locked to the camera’s motion, everything rendered in the scene can
only appear to move as smoothly as the camera itself moves. One “kink”
in the camera’s motion will be perceived as every pixel in the image getting
bumped, which throws audiences off balance.

In the previous chapter we saw how cubic Bézier splines can easily be made
to be C

1 smooth, but this might not be quite adequate for a camera: the ac-
celeration of the camera (the second derivative of its path) jerks discontin-
uously across knot boundaries in general, since we don’t have C

2 smooth-
ness. We also mentioned that B-splines permit construction of C

2 cubic
curves, at the cost of losing interpolation and having to make do with ap-
proximation. An alternative is to directly apply a smoothing formula to the
Bézier spline control points, making each a weighted average of the sur-
rounding control points—there are several possibilities to consider in this

3Note that we want the camera’s z-axis to point directly opposite from where it’s point-
ing, if we are to keep the image x axis pointing to the right, the image y axis pointing up,
and the camera transform to be right-handed.



6 CAMERA MOVES 19

case, including setting them to match a B-spline curve.

This is also very relevant for automatic cameras in video games. Some
games naturally have a set camera: on the character for a first-person shooter,
or maybe just fixed in the world for a non-scrolling 2D game. However, as
soon as the camera is supposed to be in a third-person perspective and
must move to follow the play, the question of smooth camera path comes
up. Without getting into more sophisticated artifical intelligence methods
which may try to optimize the viewpoint for a desired effect (e.g. making
sure there are no obscuring objects in the way, presenting action in silhou-
ette if possible, preserving a natural mapping from the player controls to
what is seen on screen), the most basic approach is to fix the camera in the
rigid coordinate system of the player’s character—for example, it might
always be over the left shoulder and a bit behind the player. If the charac-
ter’s motion is nicely responsive to player controls, it probably can be very
abrupt and jerky—which we don’t want to see in the camera. Therefore the
actual camera path should aim to smoothly follow the desired placement
instead of snapping to it at all times, either using spline contruction or even
just moving, say, 20% of the distance towards the target each frame.

6.2 Interactive Camera Control

A big part of the modeling and animating process involves working on
3D models independent of what the actual shot cameras will be for the fi-
nal scene; fast 3D rendering / visualization of the models is critical for the
artists to be able to work, including controlling the camera for the visual-
ization.

This problem, called generically “3D navigation”, is essentially as old as
real-time 3D rendering. It’s tricky because we expect our camera to have
5DOF (ignoring “roll”) but the classic mouse has only 2DOF: there’s no
way we can map a two-dimensional plane of movement to a whole five-
dimensional space of rigid transforms.



6 CAMERA MOVES 20

One possibility that’s becoming central today is to use hardware with more
degrees of freedom. For specialized scenarios, more exotic 3D devices
like virtual reality gloves or accelerometer-equipped objects (now found
in games consoles and smartphones) are a perfect fit. However, these and
older ideas have a common failing in that they don’t integrate easily with
the less 3D parts of a standard user interface—trying to select menus or
buttons by pointing in mid-air is tough. Most 3D modeling and animation
programs have a multitude of regular menus and buttons, exist within a
regular GUI system with standard file dialox boxes etc., and are expected
to run concurrently with non-3D software like mail clients, web browsers,
movie players and text editors. No device that makes that too hard can
succeed.

The two non-mouse input devices which are in common usage already, and
offer real advantages over mice for 3D navigation while still being usable
for regular GUI tasks, are stylus-equipped tablets and touch screens.

Almost all 3D artists already have a stylus and tablet, which is heavily ex-
ploited in paint and paint-like programs. In addition to the two coordi-
nates of where the stylus touches the tablet, a good device will also pre-
cisely measure the pressure being applied at the tip, two angles of tilt of
the stylus body with respect to the tablet, and even the “barrel” rotation
along the axis of the stylus, for a total of five or six input DOF. While it
takes a little getting used to, many artists use the stylus exclusively even in
regular applications, as a mouse replacement. However, directly mapping
the device’s DOF to the translation and Euler angles of a simple camera
is probably useless: for one, human muscle control of the different DOF
varies significantly [XBR11]. See Bridson’s SpikeNav interface [Bri09] for
an example of how to better exploit a stylus for this purpose, for example.

Another higher DOF input device which is common on some platforms,
and increasing in popularity on others, is multi-touch screens. It’s a little
hard to even define how many DOF this represents. In some scenarios an
application may only get a small list of contact points (one per finger), but



6 CAMERA MOVES 21

this still represents potentially 12 DOF assuming two fingers and a thumb
from each hand can be moved independently in x and y enough to be use-
ful. Other devices or API’s can report a surprisingly high resolution im-
age of the pressure applied across the entire screen, such as Rosenberg et
al.’s UnMousePad [RP09]. Reisman et al. [RDH09] provide an example ap-
proach to using a few fingers from each hand to intuitively manipulate the
location and orientation of rigid bodies—which is essentially equivalent to
camera control (thinking of the entire scene as a rigid frame relative to the
camera).

Another possibility on the horizon is to use computer vision approaches
to accurately track the user’s hands in front of the computer from camera
input. Schlattmann and Klein [SK09] demonstrate how their markerless
hand-tracking technology can be used for 3D object manipulation. While
this kind of interaction doesn’t map easily into existing GUI controls that
assume a mouse or similar input, one could imagine this coexisting easily
with a mouse or stylus at an artist’s workstation—much as the keyboard
already coexists.

Returning to the status quo today, however, we are left with the problem
of mapping a 2DOF mouse (or equivalent) to controlling a 5DOF camera.
We clearly can only control two of the five at a time, so there must be a
way to switch between “modes” of interacting, selecting which two DOF
are actively controlled. This could be as obvious as displaying a widget on-
screen with different control areas—e.g. click on the straight arrows to drag
the camera with translation, or on the curved arrows to drag the camera’s
rotation angles.

A more opaque but potentially faster (for users who have learned it) method
is to use different mouse buttons or different keys to hold down (shift/control/alt/etc.)
to change what the x � y movements of the mouse mean. This leaves the
choice of what exactly those x � y mouse movements should do. For a
“translation” mode, a direct mapping to translation in a plane parallel to
the camera’s image plane, is clearly the most obvious.



6 CAMERA MOVES 22

There’s more to write here: it’s a big and tricky subject. Refer to lecture for some
more specifics.



REFERENCES 23

References

[Bri09] Robert Bridson. SpikeNav: using stylus tilte in three-
dimensional navigation. In Proc. ACM UIST 2009 Posters, 2009.

[KCZO08] Ladislav Kavan, Steven Collins, Jiri Zara, and Carol O’Sullivan.
Geometric skinning with approximate dual quaternion blend-
ing. volume 27, page 105, 2008.

[LCF00] John P. Lewis, Matt Cordner, and Nickson Fong. Pose space
deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In Proc. SIGGRAPH 2000, pages
165–172, 2000.

[MZS+11] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey,
Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. Efficient
elasticity for character skinning with contact and collisions.
ACM Trans. Graph. (Proc. SIGGRAPH), 30:37:1–37:12, 2011.

[RDH09] Jason L. Reisman, Philip L. Davidson, and Jefferson Y. Han. A
screen-space formulation for 2d and 3d direct manipulation. In
Proc. of the 22nd annual ACM symposium on User interface soft-
ware and technology, UIST ’09, pages 69–78, New York, NY, USA,
2009. ACM.

[RP09] Ilya Rosenberg and Ken Perlin. The UnMousePad: an interpo-
lating multi-touch force-sensing input pad. ACM Trans. Graph.
(Proc. SIGGRAPH), 28:65:1–65:9, July 2009.

[SK09] Markus Schlattmann and Reinhard Klein. Efficient bimanual
symmetric 3d manipulation for markerless hand-tracking. In
Virtual Reality International Conference (VRIC), 2009.

[XBR11] Yizhong Xin, Xiaojun Bi, and Xiangshi Ren. Acquiring and
pointing: an empirical study of pen-tilt-based interaction. In
Proc. 2011 annual conference on Human factors in computing sys-
tems, CHI ’11, pages 849–858, New York, NY, USA, 2011. ACM.


