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Forward Kinematics refers to a direct approach of animating a character or
any other model as a hierarchy, where each part of the model is positioned
relative to its parent in the hierarchy—with the world itself being the parent
of the root. This chapter will cover Forward Kinematics alongside related
techniques for producing character animations, and other topics in directly
animating parts of a scene.

1 Jointed Models

The human body is spectacularly complex, especially in motion. Just typ-
ing these words involves a delicate choreography of a multitude of muscle
fibres (not as cleanly segmented into distinct muscles as you might expect
from simple anatomical illustrations) tugging on tendons that transmit the
forces to dozens of bones as they slide over each other as well as fat and fas-
cia layers, all deforming according to laws of elasticity, with cartilage and
ligaments linking bones together at irregularly shaped rolling joints. While
researchers are making progress in leaps and bounds towards capturing
all of this biomechanical glory—which is probably necessary to reproduce
truly realistic motion—we can get very far indeed with much simpler mod-
els.

The simplest model in common use is to abstract the human body into a
stick figure, in essence: a set of rigid segments (sometimes called “bones”
but not necessarily corresponding to actual real bones in the body) con-
nected at idealized joints.

1.1 Coordinate Systems

The first concept to grapple is what a rigid object, such as a Forward Kine-
matics bone, really is. We might first identify it with the geometry of the
bone, but it turns out that’s almost irrelevant in this case: ultimately we
want to render our characters with a full fleshy volume, covered in softly
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deforming skin, not as abstract stick figures or skeletons! (How to do that
comes later in this chapter.) A representative shape like a box of roughly
the right size may well be useful for the animator until we get to the final
body, but what we really care about is the local coordinate system of the bone.

A coordinate system, or frame, encodes an origin and a set of basis vectors
(three of them, for 3D), and provides a way to numerically specify posi-
tions with coordinates. For animation we generally assume that world space

is our default for interpreting coordinates. Every other coordinate system
should then be specified directly or indirectly in terms of world space: we
need to be able to figure out the coordinates of the frame’s origin in world
space, and also the frame’s basis vectors expressed in world space coor-
dinates. This notion of coordinate systems should be familiar to you from
earlier work in computer graphics—in particular, on the rendering side you
should have looked at camera space, possibly Normalized Device Coordi-
nates space, and screen space in relation to world space.

A local coordinate system for a rigid object is one that is “attached” to
the object, so that the local coordinates of the geometry of the object don’t
change even as the object moves through world space. A rigid frame should
furthermore always have orthonormal basis vectors: perpendicular to each
other and unit length. Obviously if the rigid object moves through world
space, its local coordinate system has to be changing with respect to world
space too.

A rigid coordinate system is closely tied to the notion of rigid transforma-

tion: a transformation that converts coordinates in one frame to coordi-
nates in another. Saying a frame is rigid is equivalent to saying that the
transformation from world space to the frame is rigid, which is equivalent
to saying the distance between points is preserved under the transforma-
tion. Note that a rigid frame exists on its own, but a rigid transformation
always has to specify from which frame and to which frame it’s doing the
transformation—they are not identical concepts, even though it’s necessary
to use a rigid transformation to define a rigid frame in practice (specifying
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how it relates to some other, already defined, coordinate system such as
world space).

There are many possible representations for a rigid transformation. One
with which you should be familiar is a 4 ⇥ 4 matrix, for use with homoge-
nous coordinates. However, not just any 4 matrix is a rigid transformation;
anything with a “perspective divide” is right out, for one, so we really only
want to look at matrices of the form
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where I stick with the convention that transformation matrices multiply
column vectors of coordinates on the left, with the homogenous coordinate
being the fourth coordinate. This form of matrix also encompasses scal-
ings, which change distances, and thus are not rigid. For rigidity we have
an additional constraint that the leading 3 ⇥ 3 submatrix is an orthogonal
matrix, i.e.
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Taking into account symmetry of the last product, this boils down to six
constraint equations on M . With twelve variables in M and six equations
they must satisfy, we are left with six (12 � 6 = 6) degrees of freedom for
specifying a rigid trasnformation.1

Having so many additional constraints makes for a very awkward repre-
sentation. Generally people only use the matrix form once the transforma-
tion is known, as it leads to very fast calculations via matrix multiplication,

1Actually, there is usually one more subtle restriction for physically reasonable motion—
we disallow reflections, only allowing rotations, which means detM = 1 instead of
detM = �1. Notwithstanding this, there are still six degrees of freedom.



1 JOINTED MODELS 5

but do not use this representation when actually specifying the transforma-
tion, and especially avoid it when trying to animate a rigid transformation.
Doing the obvious interpolation between two matrices that represent rigid
transformations, making a motion curve for each entry, almost certainly
won’t produce rigid transformations for intermediate values. For example,
the average between the identity and a 90

� rotation around the z axis gives
a non-rigid transformation:
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Motion curves are useless with this representation.

A much nicer representation is to represent the transformation as a se-
quence (in some order) of a translation and three rotations around a set
of axes. The rotation angles are called Euler angles in this case. The three
coordinates of the translation vector together with the three rotation angles
gives six degrees of freedom directly, with no constraints. The Euler an-
gles themselves can be animated with motion curves, producing smooth
rotational motion that at all times gives a rigid transformation.

Euler angles have their own problem, however, sometimes called “gimbal
lock”: for some special orientations, infinitely many different sets of ro-
tations map to the same orientation. In a later chapter when we discuss
rigid body physics, we will look at this in more depth, and cure it with yet
another representation.

1.2 Joints

A joint fundamentally is just a parameterized rigid transformation, spec-
ifying how the local coordinate system of one bone is related to the local
coordinate system of a connected bone. We can characterize joints in terms
of how many parameters—actual degrees of freedom—they offer.
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Of course, a joint with no parameters isn’t really a joint: the two bones
would be permanently welded together. However, it could still be conve-
nient to think of it as a joint, since this naturally lets us introduce another
coordinate system for a part of the body.

A joint with one rotation degree of freedom, around a given axis (specified
as fixed in either one of the coordinate systems), is called a revolute joint.
Knees, elbows and knuckes are commonly modeled as such. For simplicity,
we usually require that the origin of one of the coordinate systems lies on
the axis of rotation (in some sense the “location” of the joint), and that the
axis of rotation is one of the coordinate axes of that coordinate system, say
the x axis. Say bone A and bone B are connected by such a joint. The full
transformation T

B A from coordinates in A’s frame to B’s frame can be
constructed as a product R(✓)T0. The rigid transformation T0 that applies
to the A-coordinates first is just the fixed transformation for the “neutral” or
“rest” pose where the joint angle is zero: T0 is responsible for ensuring the
origin of B lies at the joint location (so the coordinates of the joint location
in B get mapped to the origin (0, 0, 0) in A) as well as any rotation needed to
ensure that the axis of rotation lines up with B’s x-axis. The parameterized
rotation R(✓) is then just a simple rotation around the x axis in B, expressed
in matrix form as:
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The inverse of this product gives the transformation T

A B from coordi-
nates in B’s frame back to coordinates in A’s frame of course.

A joint with one translation degree of freedome, along a fixed axis (spec-
ified as fixed in either one of the coordinate systems), is called a prismatic

joint. It’s quite common in robots, but rarely used for animating creatures.
Again this would typically be set up as the product of a transformation
which arranges for one coordinate system to have its origin on the axis of
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sliding at the “neutral” point (where the sliding parameter is zero) and its
x-axis lined up with the sliding axis, together with a transformation which
simply translates along x.

A joint with a full three degrees of freedom in rotation around a fixed cen-
tre (no translation), is quite common, and is called either a spherical joint or
a ball-and-socket joint (because it can be most easily created in real life as a
spherical ball encased in a spherical socket). This is fairly general purpose
for things like hips, the base of each finger (though one of the axes of rota-
tion, around the length of the finger, is highly constrained), wrists, ankles,
and sometimes parts of the spine. Specifying this with transformations pro-
ceeds as with the revolute joint, except instead of just one rotation around
x we would have a sequence of three rotations around different axes. A
common choice is to go through x, y, and z axes in that order. The total
transformation is then something like:
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A joint with all six degrees of freedom allowed—any rotation, any translation—
is also commonly used in animation for the most complex of the connec-
tions, like shoulders, the neck, and the lower jaw. To the transformation of
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the spherical joint you would typically multiply in a translation after the
rotations.

Further definitions and formal notation have been adopted in robotics,
where these joints have an accurate mechanical basis, including the obser-
vation that any joint with more than one degree of freedom can be thought
of as an assembly of several one-degree-of-freedom joints together. How-
ever, we won’t go down this path for animation.

1.3 Modeling Error

One issue to be keenly aware of is that this representation—rigid bones
with simple joints between them—is not a great model of real biomechan-
ics.

Even a joint like the hip, which is pretty close to a ball-and-socket joint,
doesn’t have exact spherical symmetry, and also has particular (and irreg-
ularly shaped) limits on the rotation that’s possible.

A joint like the knee or elbow is even further removed from a revolute
joint: instead of rotating around a single axis, the top of the lower leg
(forearm) rolls over the upper leg (upper arm) along a not-quite-circular
“track”. Though it’s arguably still one degree of freedom, there’s simulta-
neous translation and rotation.

The motion of the shoulder is a particularly tricky case. Real shoulders
have a lot of freedome of movement, with very complicated limits. Often
it’s best for a rig to leave shoulders as full six degree of freedome joints,
where all translations and rotations are possible. The same holds true of
the lower jaw.

The rotation of the hand around the axis of the forearm is even worse. The
biomechanical reality is that there are two bones in the forearm that can
twist around each other in different ways to effect a net rotation of the
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hand—but this twist takes place over the length of the forearm, not at a
particular joint. The forearm simply isn’t rigid: in a sense, it’s one long
joint and the rotation is interpolated along its length.

Finally, the spine is another odd case. Most animation models can’t be both-
ered to track a separate bone for every vertebra, even though there may be
slight movement possible between each and every one in reality. Modeling
the spine with a smaller number of bones—or likewise simplifying any part
of the skeleton (which offically has more than 200 separate bones)—incurs
error obviously.

2 Tree Representation

As well as deciding how many bones are needed for a model, and what
sorts of joints exist between them, Forward Kinematics needs a notion of
hierarchy. One bone (rigid frame) should be the root, specified with a full
six degrees of freedom relative to world space. The bones directly con-
nected to the root by joints have frames described by the parameterized
joint transformations from the root to their frames, and so on recursively.
The model must be structured as a tree (where nodes are bones/frames
and edges are joints) for this to make sense: in particular, cycles are not
permissible.

Typically the hips are chosen as the root for humans: this tradition goes
back to hand animation where the hips are generally thought to be the most
fundamental part of a motion to get right first.

Since the joints only encode the transformation between two adjacent bones
in the tree, a tree traversal is required to evaluate the transformations from
world space to any specific bone. The transformations are multiplied to-
gether in a path through the tree.


