
3 SPLINES 10

3.4 The Unit Interval

We want to build a basis for each subinterval of our spline (and later figure
out how to connect them together to get continuity and smoothness). It’s a
bit messy, however, constructing a nice basis for a general interval [ti, ti+1].
However, we can easily transform this interval to and from the unit interval
[0, 1], using a change of variable:

t = (ti+1 � ti)s+ ti , s =
t� ti

ti+1 � ti

t 2 [ti, ti+1] , s 2 [0, 1]

(17)

Then if we build a basis for polynomials on the unit interval, say {�i(s)},
we can immediately convert it into a basis for the spline interval plugging
in the subsitution for s in terms of t.

Note that this transformation is itself a linear polynomial. You can view t

(as a function of s) as a lerp between ti at s = 0 and ti+1 at s = 1. Alterna-
tively, s (as a function of t) is a lerp between 0 at t = ti and 1 at t = ti+1; in
fact, its formula already showed up in the lerping we spelled out above.

3.5 Hermite Splines

Our main motivation for going to higher degree polynomials was the pur-
suit of smoothness. In particular, to achieve a C

1 spline, we need to make
sure that not only does the value of the function match from both sides of
a knot, but also its derivative.

To get continuity, C0, we made the function match by requiring it to be
interpolating: we actually had the user provide the control point values
{fi} and constrained the polynomials to equal the control point values at
the knots.

We can take the same idea for achieving C

1: ask the user to provide values
for the function’s derivative at the knots as well, and constrain the polyno-



3 SPLINES 11

mials to have a matching first derivative at the knots. This is what is called
a Hermite spline, where derivative data is supplied and is interpolated.

Let’s work this out for the unit interval. Say we want a polynomial on [0, 1]

where the values interpolate f0 and f1,

f(0) = f0 f(1) = f1, (18)

and the derivatives (or slopes) interpolate g0 and g1,

f

0(0) = g0 f

0(1) = g1. (19)

This is four equations, for which we will want four unknown coefficients
to solve—i.e. we will want a cubic polynomial.

For now let’s work with the standard basis, {1, s, s2, s3}. A generic cubic is
f(s) = a0 + a1s + a2s

2 + a3s
3, with derivative f

0(s) = a1 + 2a2s + 3a3s2.
Substituting this into our constraints gives:

f(0) = a0 = f0

f(1) = a0 + a1 + a2 + a3 = f1

f

0(0) = a1 = g0

f

0(1) = a1 + 2a2 + 3a3 = g1

(20)

Solving this system (with a little effort) gives:

a0 = f0

a1 = g0

a2 = 3f1 � 3f0 � 2g0 � g1

a3 = 2f0 � 2f1 + g0 + g1

) f(s) = f0 + g0s+ (3f1 � 3f0 � 2g0 � g1)s
2 + (2f0 � 2f1 + g0 + g1)s

3
.

(21)
We can rearrange this around the user data:

f(s) = f0
⇥
1� 3s2 + 2s3

⇤
+f1

⇥
3s2 � 2s3

⇤
+g0

⇥
s� 2s2 + s

3
⇤
+g1

⇥
�s

2 + s

3
⇤
.

(22)



3 SPLINES 12

Of course, what we see in square brackets here is a basis for cubic polyno-
mials which naturally fits Hermite data on [0, 1]. It’s worth plotting these
to get an idea for how they look, and in particular figuring out what they
are equal to at the endpoints s = 0 and s = 1, as well as their slopes there.

There’s a fly in the ointment, however. When we transform from [0, 1] to an
interval [ti, ti+1] of non-unit length, the derivative of the function is scaled
(via the chain rule) by a factor of 1/(ti+1 � ti). We need to scale the last two
functions to make up for this. Likewise, if the user changes the length of
the interval, our software would need to automatically rescale the slopes to
match.

Specifying slopes themselves is also a bit less intuitive than function values
for users. One approach is taken by Catmull-Rom splines, where the slopes
are automatically computed from the control points themselves. We do this
using finite differences, a numerical method for estimating the derivative
of a function from function values, based on Taylor series. Without going
into too many details, if control points (ti�1, fi�1), (ti, fi), and (ti+1, fi+1)

are given, a good estimate of the derivative at ti is:

f

0(ti) ⇡ gi =

✓
ti � ti�1

ti+1 � ti�1

◆✓
fi+1 � fi

ti+1 � ti

◆
+

✓
ti+1 � ti

ti+1 � ti�1

◆✓
fi � fi�1

ti � ti�1

◆

(23)
This simplifies when the knots are uniformly spaced to

gi =
fi+1 � fi�1

ti+1 � ti�1
(24)

which is when Catmull-Rom is most commonly used. At the endpoints
of the spline (where t�1 or tn+1 don’t exist) an alternate estimate must be
used, such as the simpler one-sided finite difference g0 = (f1�f0)/(t1� t0).

Catmull-Rom isn’t always useful however. Sometimes its slope estimates
aren’t quite what the user wants, and it also enforces C1 smoothness which
might be undesirable in certain cases like collisions. With the Hermite ver-
sion, a user can elect to have different slopes at a control point for an inter-
val, deliberately breaking smoothness to model an impact. This will also be
the case for our next spline.



3 SPLINES 13

Finally, for the mathematician inside all of us, the Hermite formulation
(with or without Catmull-Rom slope estimates) lacks an elegant general-
ization to other degree polynomials such as quadratics, which is mathe-
matically annoying.

For all these reasons, we need to go one step further into spline methods to
get to the Bernstein polynomial basis used for Bézier curves.

3.6 The Cubic Bernstein Basis

One of the good things about the cubic Hermite basis is that it provides
separate control of different aspects of the function: the coefficients actually
have a direct intuitive meaning as the values or slopes at the endpoints. The
explicit control of the slopes at the endpoints also makes it very convenient
to achieve a C

1 function by matching slopes from both sides at a knot. We
want to keep these features. However, the problems we identified really
revolved around the fact that we had too much direct control of the slopes:
two of the coefficients had a different meaning (value of derivative) than
the “normal” (value of function).

If we want a polynomial on s 2 [0, 1] to be one at s = 0, obviously its
constant term has to be one. If we want it be zero there, it must have zero
constant term or in other words have a factor of s; if we further want its
derivative to also be zero at s = 0 it can’t have a linear term and then must
have a factor of s2. The same analysis applies to the other endpoint, s = 1,
only with factors of 1� s instead. This suggests we should look at building
basis functions from products of s and (1� s).

Building from this observation, the Bernstein basis for cubics can be inspired
by looking at the following expansion:

1 = 13 = [(1� s) + s]3

= (1� s)3 + 3(1� s)2s+ 3(1� s)s2 + s

3
.

(25)



3 SPLINES 14

The individual terms are the basis functions we are looking for:

B0,3 = (1� s)3,

B1,3 = 3(1� s)2s,

B2,3 = 3(1� s)s2,

B3,3 = s

3
.

(26)

These are also worth plotting. Observe that B0,3(0) = 1 whereas all the
others evaluate to zero there, and likewise for B3,3(1). This means the coef-
ficients for B0,3 and B3,3 will be the function values at the endpoints which
we want to interpolate.

Consider a generic cubic “Bernstein polynomial”, i.e. a linear combination
of the Bernstein basis functions:

f(s) = aB0,3(s) + bB1,3(s) + cB2,3(s) + dB3,3(s). (27)

Its derivative is:

f

0(s) = aB

0
0,3(s) + bB

0
1,3(s) + cB

0
2,3(s) + dB

0
3,3(s)

= a[�3(1� s)2] + b[�6(1� s)s+ 3(1� s)2]

+ c[�3s2] + 6(1� s)s] + d[3s2] (28)

At s = 0 and s = 1 we evaluate this to get the slopes at the endpoints:

f

0(0) = 3(b� a) f

0(1) = 3(d� c) (29)

That is, up to a factor of 3, the derivatives of the function are related to the
differences between coefficients.

Also take a look at where B1,3 achieves its maximum on [0, 1]—with a bit of
calculus, you should be able to show the maximum is at s = 1/3. Similarly,
the maximum of B2,3 is at s = 2/3. All the functions are non-negative over
the interval. This leads us to think of the coefficients of B1,3 and B2,3 as
approximating the values of the function at s = 1/3 and s = 2/3. The
derivatives at the endpoints are in fact the slopes of the lines going through



3 SPLINES 15

(0, a) $ (1/3, b) and (2/3, c) $ (1, d), i.e. those lines are tangent to the
curve!

This makes for a very intuitive control interface: we treat the interior coef-
ficients simply as extra control points just like the ones at the endpoints of
each interval. The big difference is that the spline won’t necessarily inter-
polate these interior control points, but will follow them in a smooth way,
with clear control over tangents or slopes at the endpoints of the interval.
Since these interior control points are of the same quality as the endpoints
(values of the function) we eliminate the problems we had with the Her-
mite basis.

Using this form of control points with the Bernstein basis leads to what is
known as a Bézier spline, which is probably the most popular type of spline
for animation.

3.7 The Bernstein Basis and its Wonderful Properties

The Bernstein basis generalizes to any degree polynomial, with the same
kind of construction. We’ve already seen the linear Berstein basis,

B0,1(s) = 1� s,

B1,1(s) = s,

(30)

which is the natural choice for lerping. For degree k polynomials, we ex-
pand as before,

1 = [(1� s) + s]k

=
kX

j=0

✓
k

j

◆
(1� s)k�j

s

j
,

(31)

and pick these terms off as the Bernstein basis:

Bj,k =

✓
k

j

◆
(1� s)k�j

s

j

=
k!

(k � j)!j!
(1� s)k�j

s

j
.

(32)



3 SPLINES 16

You can confirm this fits the linear and cubic cases we’ve seen so far.

The quadratic Bernstein basis is also very useful:

B0,2 = (1� s)2,

B1,2 = 2(1� s)s,

B2,2 = s

2
.

(33)

Quadratic Bézier curves define the outlines of every glyph (letter, number,
symbol) in TrueType fonts, for example. For this basis we think of the co-
efficient of B1,2 as a control point at s = 1/2, the midpoint of the interval.
The slope derivation works as with cubics: the quadratic curve interpo-
lates the endpoints and is tangent to the lines connecting the endpoints to
the middle control point.

The association of the coefficient of Bj,k with an approximate function value
at s = j/k holds for all j and k. You can verify that s = j/k is where the
maximum of Bj,k occurs with very little effort. With rather more effort,
the Weierstrass approximation theorem can be proven using this: for any
continuous function f(s) on [0, 1], the approximation

f(s) ⇡
kX

j=0

f( jk )Bj,k(s) (34)

converges uniformly to f(s) as k ! 1. This is a much stronger result
than Taylor’s theorem, which also deals with polynomial approximations
to smooth functions, for example—the Bernstein approximation is guaran-
teed to be equally good over the entire interval [0, 1] and only requires that
f be continuous. This means, also, that even very high degree polynomi-
als, when treated this way, can be used effectively to design curves—unlike
interpolating polynomials.

The Bernstein approximation also happens to exactly interpolate constants
(obviously—see our derivation from 1 = [(1� s)+ s]k) and linear functions



3 SPLINES 17

exactly. More precisely,

s =
kX

j=0

( jk )Bj,k(s) 8s 2 [0, 1] (35)

This means uniform motion can be exactly matched without effort.

The Bernstein basis functions are always non-negative on [0, 1], since s � 0

and 1� s � 0, and at every s sum to one (again, from our derivation). This
means you can think of them as providing weights for a weighted average:
the value of the spline at any point is a weighted average of the control
point values, with the weights changing with s. In particular, the minimum
and maximum of the spline can’t overshoot the minimum and maximum
of the control points, which is attractive for knowing that nothing can get
too crazy: this is not the case for Catmull-Rom splines, for example, which
can overshoot.

3.8 Evaluation

There is a neat trick available for evaluating a Bernstein polynomial called
the de Casteljau algorithm, after its inventor, which provides better numeri-
cal stability—and is simply more elegant—than the brute-force approach.
Essentially we can use a series of lerps to boil the input coefficients down
to the final value, as explained below.

Let’s start with a quadratic example, with coefficients f0, f1, and f2, evalu-
ated at s 2 [0, 1]. Begin by lerping between f0 and f1 with parameter s, and
between f1 and f2 with s as well:

f

1
0 = f0(1� s) + f1s,

f

1
1 = f1(1� s) + f2s.

(36)

Then lerp between these intermediate values at parameter s as well:

f(s) = f

2
0 = f

1
0 (1� s) + f

1
1 s. (37)



3 SPLINES 18

Expanding this reveals it to indeed be the Berstein polynomial at s:

f(s) = [f0(1� s) + f1s] (1� s) + [f1(1� s) + f2s] s

= f0
⇥
(1� s)2

⇤
+ f1 [2(1� s)s] + f2

⇥
s

2
⇤ (38)

This scheme generalizes to higher degrees too. For example, for cubics with
coefficients f0, f1, f2, and f3, we first do the three lerps between adjacent
coefficients:

f

1
0 = f0(1� s) + f1s,

f

1
1 = f1(1� s) + f2s,

f

1
2 = f2(1� s) + f3s.

(39)

Then lerp between these:

f

2
0 = f

1
0 (1� s) + f

1
1 s,

f

2
1 = f

1
1 (1� s) + f

1
2 s.

(40)

Finish off with one more lerp:

f(s) = f

3
0 = f

2
0 (1� s) + f

2
1 s. (41)

So simple!

But wait: it gets better. This can be interpreted geometrically too. The first
set of lerps identify points on the line segments (at a certain ratio) between
neighbouring control points. The second set of lerps identify points on the
line segments between the first set of points, and so on. See the diagram in
class for just how pretty this is.

3.9 Subdivision

Aside from adjusting control points, a critical part of artistic control over a
motion curve is the ability to add new control points to an existing curve,
gaining extra control. That is, we want to insert a new knot ti+1/2 inside
an existing interval [ti, ti+1]. The computer then needs to find new control



3 SPLINES 19

point values: ideally the default new values should be such that the curve
doesn’t change at all (but simply exposes a new set of controls for finer-
grained control).

In the piecewise-linear case, it’s pretty obvious what the new control point
should be: simply lerp between the old control points, taking

fi+1/2 = fi

✓
ti+1 � ti+1/2

ti+1 � ti

◆
+ fi+1

✓
ti+1/2 � ti

ti+1 � ti

◆
. (42)

This divides the straight line segment on [ti, ti+1] into two segments with-
out changing the actual values of the function at all.

For higher degree polynomials, subdivision without changing the function
is a bit trickier to arrange. Let’s focus just on the unit interval again, relying
on the transformation back to the real intervals to make it right.

Suppose our Bézier coefficients are f0, . . . , fk for a degree k polynomial
on [0, 1], and we want to split the interval at s. The amazing answer is that
we reuse the intermediate coefficients generated in de Casteljau evaluation.
The new coefficients on the [0, s] subinterval should be f0, f1

0 , . . . , fk
0 ; the

new coeffients on the [s, 1] subinterval should be f

k
0 , fk�1

1 , . . . , f1
k�1, fk.

Proving that this works is a little tedious, but not difficult at all for special
cases such as k = 2 or k = 3 (which in practice is all we will care about for
the course). I’ll leave this as an exercise if you’re curious.

3.10 Even More Splines

With Hermite or Bézier splines, it’s easy for cubics to achieve C

1 smooth-
ness: just make sure slopes match at the junctions between intervals. What
about C2? Notice that a piecewise-linear spline is C

0; if you integrate that
you get a piecewise-quadratic which must be C

1 since its derivative is the
piecewise-linear C

0 function. If you integrate again you get a piecewise-
cubic which must be C

2. So we know it’s possible to get C2 smoothness
with cubic splines—but short of doing a lot of integrals, how?



3 SPLINES 20

This isn’t necessarily something we care about for motion curves: integrat-
ing a piecewise constant acceleration just gives a C

1 position function, for
example, and that should be adequate for most dynamics. Most of the time
Bézier cubics are just fine.

However, C

2 or higher smoothness can occasionally be useful for very
smooth motion, like the path a camera should take without disturbing the
audience. (More on camera paths in a later chapter.)

One possibility to achieve C

2 smoothness is to use Hermite or Bézier cu-
bic splines as before, but instead of allowing the user to set slopes or in-
terior control points on intervals, have the computer solve a large system
of equations for values which match first and second derivatives at knots.
This gives an interpolating C

2 spline. Unfortunately, whenever the user
adjusts a control point, the system has to be solved again (which is poten-
tially expensive), and more critically the entire curve can change. For just
the regular C1 form, when a user adjusts a control point it only affects the
curve in the neighbouring intervals—the rest remains unchanged. This is
called local control, and is a very good thing: the user can tweak one part
of the motion without worrying that it’s screwing up another part that was
already good. The interpolating C

2 cubic instead has global control, where
adjusting any control point has an effect on the entire curve from start to
finish, which is bad.

To get C2 piecewise-cubic splines with local control, it turns out you have
to give up on the interpolating condition. Instead, you can build an ap-
proximating spline, which goes near but not necessarily through the control
points. The foremost example of such a spline is called a B-spline.

B-splines actually generalize to any degree polynomial, and achieve higher
and higher smoothness as the degree increases (at the expense of looser and
looser approximation, and less and less local control). B-splines have been
further generalized to Non-Uniform Rational B-Splines (NURBS for short)
which is where the knots may be non-uniformly spaced, and instead of a
cubic polynomial in each interval the curve uses a ratio fo two cubics—a



4 EXERCISES 21

rational function—both of which are themselves B-splines. B-splines and
NURBS are extremely important for geometric modeling, especially when
generalized from curves to surfaces, but we will not cover them in this
course.

4 Exercises

4.1 Reading and Watching

You may find it useful to look up some of the mathematical constructs of
this chapter in another resource, such as Wolfram Mathworld:

http://mathworld.wolfram.com/

4.2 Programming

Assignment 2 will involve writing a curve editor widget with PyQt, and
using it to animate a simple scene. More details will come shortly.

4.3 Sample Exam Questions

This chapter is just brimming with math! In addition to knowing the terms
in italics introduced in this chapter, expect both theoretical and calcula-
tional questions, such as:

• How would a C

1 piecewise-linear curve be constructed?

• Define the Bernstein basis polynomials for degree k.

• Consider a quadratic Bézier spline made of two intervals on knots
0, 1, 3 with control point values 1, (5), 4, (3), 0 where parentheses mark
the controls interior to the two intervals. Is this spline C

0 or C1?



4 EXERCISES 22

• How do you subdivide a quadratic Bernstein polynomial on [0, 1] at
the midpoint 1/2? Prove that the two new polynomials evaluate to
be identical to the original.


