Motion Curves

Robert Bridson

September 12, 2011



1 MODELING, ANIMATION, AND RENDERING 2

1 Modeling, Animation, and Rendering

In the first course in graphics, we were mostly concerned with rendering,
producing a 2D image of a “model” consisting of 3D geometry, appearance
functions (like colours, shininess coefficients, textures), lighting, a camera
pose, etc. If we represent all the information in that model with the label
M and the 2D image as Z, then we can express rendering as evaluating a
function R:

T =R(M).

The model will naturally depend on many parameters, which we can ex-
press with a functional relationship too:

M(p17p27' .. apn)

For example, parameter p; might be the z-coordinate of the camera, p43 the
radius of a sphere that appears in the scene, and p3;s7 the red component
of one of the lights. Many stages in the film pipeline contribute to creating
this model, this massive function M: modeling, rigging, etc.

Continuing in this vein, we can abstractly view the process of animation as
assigning a value to each parameter p; in the model for each moment in
time. Again, in functional terms, we’re coming up with a vector-valued

function
P(t) = [pl(t)ﬂPQ(t>v cee 7pn<t>]7

and then generating a frame at time ¢ with
Z(t) = R(M(P(1)))-

This is a very abstract way of thinking about animation, but it does show
how much freedom we have in animating—any parameter in the model
can be “animated” by making it a function of time.



2 MOTION CURVES 3

2 Motion Curves

A motion curve is just one of the animated parameters, considered as a
function of time. For example, if p; (¢) is indeed our function mapping from
time to the z-coordinate of the camera in a scene, we can plot it to see it as a
curve. If we felt something was wrong with the camera motion, looking at
that plot could instantly clue us in to moments where it might be too jerky
or overly smooth.

Even better, most animation programs also enable the user to edit a motion
by directly adjusting the motion curves in a curve editor. This isn’t always
the most intuitive control—we’ll return to that in a bit—but it is a very
explicit and transparent mechanism that often is the best way to go.

This brings us to the big question: how do we express easily editable curves?
We want to be able to approximate just about any smooth (or mostly smooth)
function, we want convenient and intuitive control, reasonably efficient
evaluation. We don’t necessarily care about exactly matching every func-
tion anyone could dream up—as long as the visible error can be made ar-
bitrarily small, approximation is just fine.

This problem has been extensively studied in the context of geometric mod-
eling, in particular CAD (Computer Aided Design).

3 Splines

A spline is a piecewise-polynomial curve, usually with some constraints on
continuity or differentiability, and also usually expressed in a particularly
convenient form based on control points.

Let f(t) be the motion curve in question (one of the p;(t)’s from above, but
I'm changing the notation to avoid ambiguity when we introduce specific

values f;, where the subscript index has a very different meaning). We'll



3 SPLINES 4

only look at f defined on an interval of time ¢ € [0, T7.

Piecewise-polynomial means that [0, 7] can be split into subintervals, say
0=ty <t] <ty < --- <t, =T, and on each of these subintervals
[ti, ti+1], the function f(t) is equal to a polynomial—but each subinterval’s
polynomial could have different coefficients.

Polynomials are convenient for designing curves partly because they’re so
easy to work with (just needing multiplication and addition in their eval-
uation, produce other polynomials when differentiated), partly because
they’re infinitely differentiable and have no singularities of any sort on
their own, and partly because there are strong theorems like Taylor’s indi-
cating their power at locally approximating smooth functions. Low-degree
polynomials, cubic and less in particular, also have special physical signifi-
cance: they can accurately approximate how thin materials naturally bend
in the real world.!

3.1 Lerping

While the simpelst polynomial of all is a constant, and so the simplest
spline is a piecewise constant function, a piecewise constant function isn’t

particularly useful for motion curves—it can’t represent continuous mo-

2

tion.” Therefore the minimum-degree spline we have interest in is the

"Loosely speaking, a thin strip of elastic materal such as wood will settle into a shape
which minimizes its curvature in a least-squares sense, subject to constraints such as hav-
ing its ends fixed or being in contact with some other solid. Modeling the curvature of a
function as being its second derivative leads, with some manipulation called “the calculus
of variations”, to the statement that curvature is minimized when the fourth derivative is
zero. A curve with zero fourth derivative is exactly a cubic polynomial. In fact, the word
“spline” originally referred to a thin piece of wood or rubber which was constrained by a
draughtsman to pass over certain points on a drawing, and its curve could then be traced

to get a smooth function—which is naturally pretty close to a cubic curve for these reasons.
20f course, if there is a separate constant value for every single frame it could give the

illusion of continuous motion—except there would be no notion of motion blur, which we
have already seen is very important.



3 SPLINES 5

piecewise-linear spline.

While you could write a piecewise-linear spline in terms of a standard poly-
nomial of degree one on each subinterval, something like this,

FOlg g =it +b i=0,.n—1, 1)

this has many disadvantages. First and foremost, to enforce continuity we
have a constraint that the value at ¢; approached from the left on inter-
val [t;_1,t;] has to equal the value approached from the right on interval
[ti, tita]:

ai—1t; + bi—1 = a;t; + b; i=1,...,n—1. 2)
Now we have a system of equations to satisfy, and the user isn’t free to
directly manipulate the coefficients—which in of themselves aren’t very

intuitive controls.

A much better, and more natural approach, is to let the user specify the
function values at the endpoints between subintervals:

f(tz) = fz 1= 0, ... (3)

In other words, the user gives us the times they care about (¢;) and the
values of the function there (f;), and it’s up to us to construct the piecewise-
linear function which passes through those points.

A bit of terminology: we call the values ¢; the knots; the pair of knot and
function values (t;, f;) is a control point (since that’s how the user will con-
trol the function), and the requirement that the function passes though the
control points is called interpolation.

You should already have seen how to do linear interpolation—or lerping for
short. Consider interval [¢;,?;11]. We need a linear polynomial that equals
fi at the left endpoint and f;; at the right endpoint. This is fairly easy to
work out with a formula at+b as before, but I will give you a more pleasant
form which highlights the two control points:

SOyt = T [tlﬂ_t] + fi1 [t—t,j : 4)

tiv1 — 1



3 SPLINES 6

It should be obvious that the two terms here are both linear polynomials
in ¢ so their sum is, and that the appropriate values are achieved at the
endpoints, so this has to be the answer.

3.2 Smoothness

Piecewise-linear curves are tremendously useful throughout animation, but
the one problem with them is that they aren’t very smooth. Obviously a
straight line is perfectly smooth, but at the knots, the junctions between one
interval and the next, the piecewise-linear curve can have a sharp “kink”.

One of the technical ways to define smoothness in mathematics is by clas-
sifying functions as C? if they are continuous, C" if they are differentiable
and the first derivative is continuous, and in general C' k if the function has
a k’th derivative which is continuous. Obviously every C! function is also
CY, and more generally you can think of these as nested spaces of func-
tions. Polynomials, amongst many other functions such as sin(t), et, etc.,
have infinitely many derivatives and thus are called C*°.

A piecewise-linear spline is always C° (continuous) but in general can’t
be C. If it represents a position, its velocity (the first derivative) isn’t well
defined at the knots {¢;}, where the velocity instantaneously changes value.
(In fact, the first derivative of a piecewise-linear function is a piecewise-
constant function, with undefined values at the jumps between constant
values.)

We know from physics that most real motion is smoother than that. Ar-
guably all motion has to be at least C! from Newton’s Law F' = ma, in
fact. Very rapid collisions are usefully modeled as being an instantaneous
change in velocity (corresponding to infinite forces over an infinitesimal

period of time)—but those C? events are the exception to the rule.

Splines are always C'*° between knots, due to the infinite smoothness of
polynomials. For a piecewise-polynomial to be C?, the values at the knots



3 SPLINES 7

approached from the left and right have to be equal. For a spline to be C*,
the first derivatives or slopes at the knots approach from the left and right
have to match. For a spline to be C? it’s that as well as matching the second

derivatives.

Looking at piecewise-linear functions we see we can’t possibly do better
than C? in general. Interpolating the values at the endpoints uniquely spec-
ifies the linear polynomial on any interval, thus there are no more degrees
of freedom to modify to achieve any other desired quality such as slopes
matching at knots. The only solution, then, is to use a higher degree poly-

nomial.

3.3 Representation

A polynomial can have many representations. For example, all of these
formulas represent the same cubic:

3+ 2t —t+3, (5)

((t+2)t — 1)t + 3, (6)
(t—1345(t—-1)2+6(t—1)+5, ?)

3[1 -8 + 8 [3(1—t)%] +3 [3(1 —t)¢*] +5[¢*]. (8)

The first form (5) is probably what you're most familiar with; the second (6)
is almost equivalent but rewritten in a way that is usually more efficient to
evaluate (Horner’s Rule) since it involves less multiplies. The third form (7)
is written in powers of (¢ — 1) instead of ¢ but evaluates to the same values:
however, whereas the coefficients in the first two formsare [1 2 -1 3],
the coefficients for the third form are [I 5 6 5]. The last form (8) is an
example of a Bézier spline, which we will discuss below.

Before getting into a selection of the “best” representation to use, we should
take a second to think clearly about how to switch between representations,
and even what a representation really means. We’ll declare that (5) and (6)
in the example really are the same representation: the defining coefficients



3 SPLINES 8

are the same even though the exact sequence of arithmetic operations im-
plied are slightly different.

We can view the standard form of a polynomial,
ap + a1t + a2t2 +... aktk, 9)

as one way of identifying a “vector” from the (k + 1)-dimensional vector
space of degree k polynomials. In particular, we can express that vector
space as the span of a set of basis vectors,

span(1,t,t%, ... %), (10)

and equation (9) is just expressing a linear combination of those basis vec-

tors with coefficients ag, a1, . .., ag.

There are many other choices for a basis for any vector space, of course. For
example, for degree one polynomials, the standard basis is

{1,t}, (11)

but an equally valid basis is
{1 —1tt}. (12)

Any degree one polynomial represented in the first basis as
ag + art (13)
can be represented with different coefficients in the second basis as
ap[l —t] + (a1 + ao)[t]- (14)

Formally we could write:

[14[33]:[”4

We can even express this change of basis with a matrix:

LlE] el -t afdy]

(16)

ao

(15)

ap + a1

ao

ag + a1




3 SPLINES 9

So the question for us becomes how to select a useful basis, and conver-
sion between representations is simply multiplication by a change-of-basis

matrix which can be pre-computed.



