Notes

- Assignment 0 is due today!
- To get better feel for splines, play with formulas in MATLAB!

Review

- **Spline**: piecewise polynomial curve
- **Knots**: endpoints of the intervals on which each polynomial is defined
- **Control Points**: knots together with information on the value of the spline (maybe derivatives too: **Hermite** splines)
- **Interpolating**: goes through control points
- **Approximating**: goes near control points
- **Smoothness**: C^n means the n^{th} derivative is continuous across the control points

Choices in Animation

- Piecewise linear usually not smooth enough
- For motion curves, cubic splines basically always used
- Three main choices:
 - Hermite splines: interpolating, up to C^1
 - Catmull-Rom: interpolating C^1
 - B-splines: approximating C^2

Cubic Hermite Splines

- Our generic cubic in an interval $[t_i, t_{i+1}]$ is
 \[q_i(t) = a_i(t-t_i)^3 + b_i(t-t_i)^2 + c_i(t-t_i) + d_i \]
- Make it interpolate endpoints:
 \[q_i(t_i) = y_i \quad \text{and} \quad q_i(t_{i+1}) = y_{i+1} \]
- And make it match given slopes:
 \[q_i'(t_i) = s_i \quad \text{and} \quad q_i'(t_{i+1}) = s_{i+1} \]
- Work it out to get
 \[a_i = \frac{-2(y_{i+1} - y_i)}{(t_{i+1} - t_i)^3} + \frac{s_i + s_{i+1}}{(t_{i+1} - t_i)^2} \quad c_i = s_i \]
 \[b_i = \frac{3(y_{i+1} - y_i)}{(t_{i+1} - t_i)^2} - \frac{2s_i + s_{i+1}}{(t_{i+1} - t_i)} \quad d_i = y_i \]
Hermite Basis

- Rearrange the solution to get

\[
y_i \left(\frac{2(t-t_i)^3}{(t_{i+1}-t_i)^3} - \frac{3(t-t_i)^2}{(t_{i+1}-t_i)^2} + 1 \right) + y_{i+1} \left(\frac{-2(t-t_i)^3}{(t_{i+1}-t_i)^3} + \frac{3(t-t_i)^2}{(t_{i+1}-t_i)^2} \right) \\
+ s_i \left(\frac{(t-t_i)^3}{(t_{i+1}-t_i)^3} - \frac{2(t-t_i)^2}{(t_{i+1}-t_i)^2} + (t-t_i) \right) + s_{i+1} \left(\frac{(t-t_i)^3}{(t_{i+1}-t_i)^3} - \frac{(t-t_i)^2}{(t_{i+1}-t_i)^2} + (t-t_i) \right)
\]

- That is, we’re taking a linear combination of four basis functions
 - Note the functions and their slopes are either 0 or 1 at the start and end of the interval

Breaking Hermite Splines

- Usually specify one slope at each knot
- But a useful capability: use a different slope on each side of a knot
 - We break C¹ smoothness, but gain control
 - Can create motions that abruptly change, like collisions
- Aside: artists like to break things! Animation systems should have as much flexibility as possible

Catmull-Rom Splines

- This is really just a C¹ Hermite spline with an automatic choice of slopes
 - Use a 2nd order finite difference formula to estimate slope from values
 \[
s_i = \left(\frac{t_i - t_{i-1}}{t_{i+1} - t_{i-1}} \right) y_{i+1} - y_i + \left(\frac{t_{i+1} - t_i}{t_{i+1} - t_{i-1}} \right) y_i - y_{i-1}
 \]
 - For equally spaced knots, simplifies to
 \[
s_i = \frac{y_{i+1} - y_{i-1}}{t_{i+1} - t_{i-1}}
 \]

Catmull-Rom Boundaries

- Need to use slightly different formulas for the boundaries
 - For example, 2nd order accurate finite difference at the start of the interval:
 \[
s_0 = \left(\frac{t_2 - t_0}{t_2 - t_1} \right) y_1 - y_0 - \left(\frac{t_1 - t_0}{t_2 - t_1} \right) y_2 - y_0
 \]
 - Symmetric formula for end of interval
 - Which simplifies for equal spaced knots:
 \[
s_0 = 2 \frac{y_1 - y_0}{\Delta t} - \frac{y_2 - y_0}{2\Delta t}
 \]
Aside: Evaluation

- There are two main ways to evaluate splines
 - Subdivision
 - Horner’s rule
- I won’t discuss subdivision (CPSC 424)
- Horner’s rule: instead of directly computing \(a_i(t-t_i)^3 + b_i(t-t_i)^2 + c_i(t-t_i) + d_i \)
 use the more efficient expression

 \[
 x = t - t_i \left((a_i x + b_i) x + c_i x + d_i \right)
 \]

B-Splines

- We’ll drop the interpolating condition, and instead design a basis that is \(C^2 \) smooth
 - So control points say how much of each basis function to use, not exactly where the curve goes
- This time a basis function overlaps more than one interval
- Want to be able to interpolate constants
- We won’t cover full derivation

B-Spline Basis

- Define recursively, from zero-degree polynomials up to cubic (and beyond)

 \[
 B_{i,0}(t) = \begin{cases}
 1 & t \in [t_i, t_{i+1}] \\
 0 & \text{otherwise}
 \end{cases}
 \]

 \[
 B_{i,1}(t) = \frac{t - t_{i-1}}{t_i - t_{i-1}} B_{i-1,0}(t) + \frac{t_{i+1} - t}{t_{i+1} - t_{i}} B_{i+1,0}(t)
 \]

 \[
 B_{i,2}(t) = \frac{t - t_{i-1}}{t_{i+1} - t_{i-1}} B_{i-1,1}(t) + \frac{t_{i+2} - t}{t_{i+2} - t_{i}} B_{i+1,1}(t)
 \]

 \[
 B_{i,3}(t) = \frac{t - t_{i-2}}{t_{i+1} - t_{i-2}} B_{i-1,2}(t) + \frac{t_{i+2} - t}{t_{i+2} - t_{i}} B_{i+1,2}(t)
 \]

- Note: not well defined near start and end of knot sequence - you need more knots

Looking at B-splines

- \(B_{i,3}(t) \) peaks at (or near) knot \(t_i \), but is nonzero on the interval \([t_{i-2}, t_{i+2}]\)
 - Always \(\geq 0 \),
 - Always \(< 1 \),
- Basis functions add up to 1 everywhere
 - Any point on the spline curve is a weighted average of nearby control points
Control

- Local control: adjusting a control point only changes curve locally
 - Far away, curve stays exactly the same
- Global control: adjusting one control point changes entire curve
 - Not as desirable - working on one part of the curve can perturb the parts you already worked out to perfection
 - But, for decent splines, effect is small---decays quickly away from adjustment

Controlling Cubics

- All three of the cubic splines we saw have local control
- But if we enforce C^2 smoothness and make it interpolating, we end up with global control