Notes

Heightfields

- Especially good for terrain - just need a 2d array of heights (maybe stored as an image)
 - Displacement map from a plane
- Split up plane into triangles
- Particle inside:
 - Figure out which triangle (x,y) belongs to, check z against equation of triangle's plane
- Trajectory cross (stationary heightfield):
 - Check all triangles along path (use 2d line-drawing algorithm to figure out which cells to check)
- Object normal: get from triangle
- Distance etc.: not so easy, but vertical distance easy for shallow heightfields

Triangle mesh

- For any decent size, need to use an acceleration structure
 - Could use background (hash-)grid, octree, kd-tree
 - Also can use bounding volume (BV) hierarchy
 - Spheres, axis-aligned bounding boxes, oriented bounding boxes, polytopes, ...
 - More exotic structures exist...
- Particle inside (closed mesh):
 - Shoot a ray out to infinity, count the number of crossings
- Trajectory cross (stationary mesh):
 - For each candidate triangle (from acceleration) check a sequence of determinants

Triangle intersection

- Many, many ways to do this
- Most robust (and one of the fastest) is to do it based on determinants
 - For vectors a,b,c define $\det(a,b,c) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$ ($= a \times b \cdot c$)
 - $\det(a,b,c) = \pm 6$ volume($\text{tet}(a,b,c)$), the signed volume of the tetrahedron spanned by edges a,b,c from a common point
 - Sign flips when tetrahedron reflected, or alternatively from right-hand-rule on a\timesb\cdotc
- Triangle intersection boils down to
 - 2 sign checks: segment crosses plane
 - 3 sign checks: line goes through triangle
Triangle Mesh (more)

- **Object normal**
 - Normalize cross-product of two sides of the triangle
- **Distance from single triangle**
 - Find barycentric coordinates — solve a least-squares problem
 - Need to clip to sides of triangle
 - Compute distance from that point
 - Note: also gives direction to closest point
- **Distance (and direction) from mesh**
 - Compute for all possible triangles, take minimum
 - Trick is to find small list of possible triangles with acceleration structure

Implicit Surface

- **Simple function, metaballs, or interpolated from 3d grid ("level set")**
 - Recall - for metaballs need acceleration
- **Particle inside:** \(f(x) < 0 \)
- **Trajectory cross:**
 - Just like ray-tracing - use secant method
- **Object normal:** \(\nabla f / |\nabla f| \)
- **Distance from surface:**
 - If \(f() \) is signed distance, then trivial
 - Otherwise, painful, but \(f() \) might be good enough for application

Back to particle collisions

- So now we can represent other geometry, how do we do a repulsion velocity field?
 - \(v(x) = f(\text{distance}(x)) \times n(x) \)
 - \(n(x) \) is the outward direction (normal on surface)
 - \(f \) is some decreasing function that drops towards zero far away
 - Exponential: \(f(d) = e^{-k \cdot d} \)
 - Or linear drop, truncated to zero: \(f(d) = \max(0, m - k \cdot d) \)
 - Or more complicated
 - Outward direction is plus/minus direction to closest point
 - Aside: useful for more than just collisions - e.g. fire particles streaming out of an object

Force-based repulsions

- Can do exactly the same trick for force-based motion
 - Add repulsion field to \(F(x) \)
- Simple, often works, but there are sometimes problems
 - What are you trying to model?
 - Robustness - high velocity impacts can penetrate arbitrarily far
 - High velocity impacts may go straight through thin objects
 - How much of a rebound do you want?
Damped repulsions

- Think of repulsion force as a generalized spring
- Add spring damping:
 \[F_{\text{damp}} = -D(v \cdot n(x))n(x) \]
 - \(D \) is some parameter you set
 - \(n(x) \) is the outward direction again

Aside: springs and damping

- How do you come up with reasonable values for spring constants and damping constants?
 - And how do you pick good step sizes for differential equation solver (Forward Euler etc.)
- Look at 1D simplified model
 \[Ma = F = -Kx - Dv \]
 - \(M \) is the mass, \(K \) is like a spring stiffness, \(D \) is the damping parameter
- Solve it analytically

Critical Damping

- Three cases:
 - Underdamped \((D^2 - 4MK < 0) \)
 - Oscillation with frequency \(\omega \sim \frac{1}{2} \sqrt{K/M} \)
 - Characteristic time: \(t \sim 2\pi \sqrt{M/K} \)
 - Exponentially decays at rate \(r = -D/(2M) \)
 - Characteristic time: \(t \sim 2M/D \)
 - Overdamped \((D^2 - 4MK > 0) \)
 - No continued oscillation
 - Exponentially decays at rates \(r \sim -K/D, -D/M \)
 - Characteristic times: \(t \sim D/K, M/D \)
 - Critically damped \((D^2 - 4MK = 0) \)
 \(D = 2\sqrt{MK} \)
 - No continued oscillation
 - Fastest decay possible at rate \(r = -D/(2M) \)
 - Characteristic time: \(t \sim 2M/D \)

Numerical time steps

- Should be proportional to minimum characteristic time
 - Implicit methods like Backwards Euler actually let you take larger steps with stability, but wipe out all hope of accuracy for things with small characteristic time
- For nonlinear multi-dimensional forces, what are \(K \) and \(D \)?
 - Estimate them by figuring out what is the fastest \(|F|\) can change if you modify \(x \) or \(v \) respectively
 - This is all very approximate, so don’t get hung up on getting the “right” answer
 - Will ultimately need a fudge factor anyhow (from experiments)
True Collisions

- Turn attention from repulsions for a while
- Model collision as a discrete event - a bounce
 - Input: incoming velocity, object normal
 - Output: outgoing velocity
- Need some idea of how “elastic” the collision
 - Fully elastic - reflection
 - Fully inelastic - sticks (or slides)
- Let’s ignore friction for now
- Let’s also ignore how to incorporate it into algorithm for moving particles for now

Newtonian Collisions

- Say object is stationary, normal at point of impact is \(\mathbf{n} \)
- Incoming particle velocity is \(\mathbf{v} \)
- Split \(\mathbf{v} \) into normal and tangential components:
 \[
 v_N = \mathbf{v} \cdot \mathbf{n} \\
 v_T = \mathbf{v} - v_N \mathbf{n}
 \]
- Newtonian model for outgoing velocity
 - Unchanged tangential component \(v_T \)
 - New normal component is \(v_N^{\text{new}} = -\varepsilon v_N^{\text{old}} \)
 - The “coefficient of restitution” is \(\varepsilon \), ranging from 0 (inelastic) to 1 (perfectly elastic)
- The final outgoing velocity is
 \[
 v^{\text{new}} = v_T - \varepsilon v_N^{\text{old}} \mathbf{n}
 \]

Relative velocity in collisions

- What if particle hits a moving object?
- Now process collision in terms of relative velocity
 - \(v_{\text{rel}} = v_{\text{particle}} - v_{\text{object}} \)
 - Take normal and tangential components of relative velocity
 - Reflect normal part appropriately to get new \(v_{\text{rel}} \)
 - Then new \(v_{\text{particle}} = v_{\text{object}} + (\text{new } v_{\text{rel}}) \)