The Halting Problem for Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- The Undecidability of A_{TM}
 - Diagonalizing Turing Machines
 - Turing Recognizable \supset Turing Decidable

- Turing Unrecognizable Languages
 - How do we know if M is a decider?
 - The Halting Problem
 - Turing Unrecognizable Languages
Trying to Decide A_{TM}

- $A_{TM} = \{ M \#w \mid \text{Turing machine } M \text{ accepts string } w \}$
 - A_{TM} is Turing recognizable:
 We constructed a Turing Machine, U that recognizes A_{TM} in the October 27 lecture.
 - U was not a decider – it would loop on input $M \#w$ if M loops on input w.
 - Can we make a Turing machine that decides A_{TM}?
 This machine must halt (either accept or reject) for all possible inputs.

- Assume that E is a TM that decides A_{TM}.
 We’ll show that this leads to a contradiction on the next few slides.
\(A_{TM} \) Is Undecidable

- \(A_{TM} = \{ M \# w \mid M \text{ describes a TM that accepts string } w \} \)
- Let \(D \) be a Turing machine that does not have \(\# \) in its input alphabet. On input \(w \), \(D \) does the following:
 - Appends \(\# w \) onto its input tape to produce \(w \# w \).
 - Runs \(E \) (the decider for \(A_{TM} \)) as a “subroutine”.
 - If \(E \) accepts \(w \# w \), \(D \) rejects.
 - If \(E \) rejects \(w \# w \), \(D \) accepts.
- Now, run \(D \) with its own description as its input:
 - If \(E \) says that \(D \) accepts when run with \(D \) as input, then \(D \) rejects when run with \(D \) as input.
 - If \(E \) says that \(D \) rejects when run with \(D \) as input, then \(D \) accepts when run with \(D \) as input.
 - Either way, we have a contradiction.
- \(\therefore E \) cannot exist.
 - There is no TM that decides \(A_{TM} \).
 - \(A_{TM} \) is not Turing decidable.
Why is this Diagonalization?

The set of all Turing machines is countable:

- Turing Machines can be described by strings.
 - In the October 27 lecture we described TMs using strings over the alphabet $\Sigma_{TM} = \{0, 1, (, ,)\}$.
 - Not all strings are valid TM descriptions. Thus, $|TM| \leq |\Sigma_{TM}^*| = |\mathbb{N}|$.
- For every $k \geq 3$ there is a valid TM with k states. Thus $|TM| \geq |\mathbb{N}|$.
- We conclude that $|TM| = |\mathbb{N}|$.

The set of all languages is uncountable.

The set of all languages has size $2^{\Sigma^*} = 2^{\mathbb{N}}$.

There are more languages than there are Turing machines.

∴ There are languages that are neither Turing decidable nor recognizable.
Why is this Diagonalization?

- The set of all Turing machines is countable:
- The set of all languages is uncountable.
 The set of all languages has size $2^{|\Sigma^*|} = 2^{|\mathbb{N}|}$. For example, with $\Sigma = \{0, 1\}$ we have:

<table>
<thead>
<tr>
<th></th>
<th>ϵ</th>
<th>0</th>
<th>1</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
<th>000</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_0</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>L_1</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>L_2</td>
<td>R</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>L_3</td>
<td>A</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>L_4</td>
<td>R</td>
<td>R</td>
<td>A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>...</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

- There are more languages than there are Turing machines.
 \therefore There are languages that are neither Turing decidable nor recognizable.
Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j:

$$
\begin{array}{cccccccc}
M_0 & M_1 & M_2 & \ldots & M_{117} & M_{118} & M_{119} & \ldots \\
M_0 & \infty & \infty & \infty & \ldots & \infty & \infty & \infty & \ldots \\
M_2 & R & R & R & \ldots & R & R & R & \ldots \\
\vdots & \vdots \\
M_{117} & A & \infty & R & \ldots & R & R & A & \ldots \\
M_{118} & R & R & R & \ldots & \infty & \infty & \infty & \ldots \\
M_{119} & R & A & \infty & \ldots & R & A & A & \ldots \\
\vdots & \vdots \\
\end{array}
$$

Let L_D be the language

$$\{ M_i \mid \text{Turing machine } M_i \text{ does not accept input } M_i \}$$
Consider the matrix where entry \((i, j)\) is 1 iff Turing machine \(i\) accepts the string that encodes Turing machine \(j\):

\[
\begin{array}{cccccccc}
M_0 & M_1 & M_2 & \ldots & M_{117} & M_{118} & M_{119} & \ldots \\
M_0 & R & R & R & \ldots & R & R & R & \ldots \\
M_2 & R & R & R & \ldots & R & R & R & \ldots \\
\vdots & \vdots \\
M_{117} & A & \infty & R & \ldots & R & R & A & \ldots \\
M_{118} & R & R & R & \ldots & \infty & \infty & \infty & \ldots \\
M_{119} & R & A & \infty & \ldots & R & A & A & \ldots \\
\vdots & \vdots \\
\end{array}
\]

Let \(L_D\) be the language
\[
\{M_i \mid \text{Turing machine } M_i \text{ does not accept input } M_i\}:
\]

\[
\begin{array}{cccccccc}
M_0 & M_1 & M_2 & \ldots & M_{117} & M_{118} & M_{119} & \ldots \\
L_D & A & R & A & \ldots & A & A & R & \ldots \\
\end{array}
\]
Constructing an Undecidable Language

- Consider the matrix where entry \((i, j)\) is 1 iff Turing machine \(i\) accepts the string that encodes Turing machine \(j\):
- Let \(L_D\) be the language
 \[
 \{M_i \mid \text{Turing machine } M_i \text{ does not accept input } M_i\}:
 \]
 \[
 \begin{array}{ccccccc}
 M_0 & M_1 & M_2 & \ldots & M_{117} & M_{118} & M_{119} & \ldots \\
 L_D & A & R & A & \ldots & A & A & R & \ldots \\
 \end{array}
 \]
- There is no TM in our list that recognizes \(L_D\) – that’s the diagonalization.
- \(L_D\) is the language that we tried to construct \(D\) to decide.
Diagonalization and Halting

- A_{TM} is not Turing decidable (slide 3).
- A_{TM} is Turing recognizable (October 27 lecture).
 - The set of Turing recognizable languages is strictly larger than the set of Turing decidable languages.
 - This is because a recognizer is allowed to loop: failure to halt means the input string is not in the language recognized by the recognizer.
- $L_D = \{ M \mid M \#M \in A_{TM} \}$ is not Turing recognizable (slide 5).
 - This is because the recognizer must halt whenever M loops when run with input M.
 - In fact, we could modify our machines to never use the reject state — they could just loop to reject.
 - Then, recognizing L_D would mean determining that the machine will never halt.
 - Our argument that L_D is not Turing recognizable shows that this variant is not Turing recognizable.

- $\therefore \text{HALT} = \{ M \#w \mid \text{Turing machine } M \text{ halts when run with input } w \}$ is Turing recognizable but not Turing decidable.
 - HALT is not even Turing recognizable.
The class of Turing decidable languages is closed under complement.

The class of Turing recognizable languages is not closed under complement.

We say that a language, L, is Turing co-recognizable iff the complement of L is Turing recognizable.

For example, the language $LOOPS = \{ M \# w \mid \text{Turing machine } M \text{ loops when run with input } w \}$ is Turing co-recognizable because it is the complement of $HALT$, a Turing recognizable language.
Relating Recognizability

- If a language is Turing recognizable and Turing co-recognizable, then it is Turing decidable.
 - Let L be a language that is both Turing recognizable and co-recognizable.
 - Because L is Turing recognizable, there is a Turing machine, M_L that for any $w \in L$ accepts w, and for any $w \notin L$ rejects or loops.
 - Because L is Turing co-recognizable, there is a Turing machine, M_{co-L} that for any $w \notin L$ rejects w, and for any $w \in L$ accepts or loops.
 - Now, we build a new TM, N that has two tapes, one for M_L and one for M_{co-L}. Each step of L takes a step for each of M_L and M_{co-L}. If M_L accepts or M_{co-L} rejects, then N accepts. Likewise, if M_L rejects or M_{co-L} accepts, N rejects. N is guaranteed to halt.
 - N is a TM that decides L.
 - $\therefore L$ is Turing decidable.
Why Allow Loopy Machines?

- Couldn’t we just insist that we’ll only consider TM’s that halt on all inputs (i.e. deciders)?

- Problem 1:
 - We could do this, and our diagonalization would still work.
 - The obvious way to construct a TM for the diagonal (slide 3) produces a TM that loops. Language L_D remains undecidable.

- Problem 2: How do we know if a TM is a decider?
 - This is the question of whether or not a TM halts on all inputs, not just on one, specific input.
 - We say that a TM is total iff it halts on all inputs, and we write

 $$TOTAL = \{ M \mid M \text{ is a TM that halts on all inputs} \}$$

 - The language $TOTAL$ is neither Turing recognizable nor co-recognizable.
 - Thus, deciding whether or not a TM is a decider is even harder than the halting problem.
This coming week (and beyond)

- **Reading**
 - Today: Sipser, 4.1
 - Oct. 29 (Today): Sipser, 4.2
 - Oct. 31 (Friday): Sipser, 5.1
 - Nov. 3 (Monday): Midterm review.
 - Nov. 5 (A week from Today): Midterm 2.

- **Homework**
 - Oct. 31 (Friday): Homework 7 due, Homework 8 goes out.
 No late homework accepted for homework 7.
 Homework 8 is extra credit.
Where did E come from?

The proof is by contradiction. To prove that A_{TM} is undecidable, we assume the opposite, namely that A_{TM} is decidable, and show that this leads to a contradiction. This contradiction shows that one of our assumptions must have been false. In particular, it shows that our assumption that A_{TM} is not undecidable (i.e. that it is decidable) is false. From that, we conclude that A_{TM} is undesirable.

You can think of this as a “game with an adversary.”

- You claim that A_{TM} is Turing undecidable.
- I (the adversary) claims that A_{TM} is Turing decidable.
- You go to the definition of “Turing decidable:”

A language is Turing decidable iff there exists a TM that decides it. A TM, M, decides a language A iff for every input string w:

- if $w \in A$ then M accepts w;
- if $w \notin A$, M rejects w;
- there is no w for which M loops.

Based on this definition, you ask me to show you a TM that decides A_{TM}.

Continued on the next slide.
Where did E come from?

You can think of this as a “game with an adversary.”

- You claim that A_{TM} is Turing undecidable.
- I (the adversary) claims that A_{TM} is Turing decidable.
- You ask me to show you a TM that decides A_{TM}.
- I give you the description of some TM, E.

This is where E comes from: I (the adversary) am obligated to produce an E for you if A_{TM} is indeed Turing decidable.

Based on E, you construct a new TM, D such that

- D accepts w if E rejects $w\#w$;
- D rejects w if E accepts $w\#w$.

Because E is a decider, E never loops. Thus, D never loops as well. See slide 3 for more details on how to construct D.

Now, you propose running D with the string that describes D as its input.

(continued on the next slide).
Where did E come from?

You can think of this as a “game with an adversary.”

Now, you propose running D with the string that describes D as its input.

- D constructs the string $D\#D$ and hands it to E.
- From the definition of A_{TM}, E accepts $D\#D$ iff D accepts when run with its own description as its input. If fact, we are running D with its own description as its input.
- If E accepts then D rejects. This means that E said that D accepts when run with its own description as its input, and D in fact rejected when run with its own description as its input.
- If E rejects then D accepts. This means that E said that D rejects when run with its own description as its input, and D in fact accepted when run with its own description as its input.
- Either way, E is wrong. Thus, E is not the decider for A_{TM} that I (the adversary) claimed it is.

This shows that there is no TM that decides A_{TM}. In other words, A_{TM} is not Turing decidable.
Where did E come from?

- Game with an adversary (summary):
 - You claim that A_{TM} is Turing undecidable.
 - I (the adversary) claims that A_{TM} is Turing decidable.
 - You ask me to show you a TM that decides A_{TM}.
 - I give you the description of some TM, E.
 - Based on E, you construct a new TM, D such that accepts w iff E rejects $w\#w$.
 - Now, you propose running D with the string that describes D as its input.
 - D constructs the string $D\#D$ and hands it to E.
 - If E accepts then D rejects and thereby contradicts E’s decision.
 - If E rejects then D accepts and thereby contradicts E’s decision.
 - Either way, E is wrong.
 - This shows that there is no TM that decides A_{TM}. In other words, A_{TM} is not Turing decidable.
Undecidability FAQ: does E loop?

- Can we conclude that E loops when run input $D\#D$?
 - This may seem reasonable, this is what machine U from the October 27 slides would do.
 - But that’s not the only way that E can fail.
 - For example, we could keep track of all configurations that we’ve seen so far and detect looping if a configuration is repeated.
 - We could apply more sophisticated tests as well, but
 - What if one of these tests is wrong?
 - E could report that TM M accepts string w when M in fact loops on input w.
 - How would you know that E was wrong?
 - You could try running M with input w, but if after a while you came back and told me that it seems to be looping even though E says it should accept, I can reply that you just haven’t run it for long enough yet.
 - How can you determine that you’ve run M long enough? – How can you decide that E is wrong?
 - In general, you can’t.
 - See the next slide for a bit more.
Can we conclude that E loops when run input $D\#D$?

It was Penrose’s mistake in *The Emperor’s New Mind*.

- Penrose assumed that because E would be wrong if it accepted or if it rejected, then E must loop when run with $D\#D$ as described above.
- BUT, E is wrong if it loops.
 - E is supposed to be a decider.
 - If I (in the adversary argument described above) give you a TM that loops for some inputs and claim that it’s a decider, then I’ve failed to hold up my end of the bargain.
 - If E is supposed to be a decider and it loops, then it is just as wrong as it is if it incorrectly accepts or rejects.

When Penrose concluded that E loops, he inserted a contradiction into his argument because he had previously assumed that E was a decider.

- Given that Penrose was arguing from inconsistent assumption, he could conclude anything.
- Penrose has the excuse that he’s a brilliant physicist who happens to be clueless about computer science.
- You are a computer science student and don’t have Penrose’s excuse. Read this FAQ and avoid those mistakes – you wouldn’t want to embarrass yourself at a party this weekend making silly claims about decidability results.