Fun with Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- Primes
- Simple Operations
- A Programmable Turing Machine
boolean[] primes(int n) {
 boolean[] b = new boolean[n];
 int p = 2; // current prime
 for(int i = 0; i < n; i++) b[i] = true;
 b[0] = false; b[1] = false;
 while(p < n) {
 for(int i = 2*p; i < n; i += p)
 b[i] = false; // a multiple of p
 for(p++; (p < n) && !b[p]; p++); // find next prime
 }
 return(b);
}
A TM for 1^p, where p is prime

Strategy: use tape as a sieve.

- For smallest prime not yet considered, cross-off all multiples of that prime.
- If we cross off the last 1 of the input string, then reject.
- Otherwise, if the last 1 of the input string is the next prime to consider, then accept.

Example:

<table>
<thead>
<tr>
<th>Input String</th>
<th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th>
<th>1 not prime</th>
<th>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = 2</td>
<td>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>eliminate multiples of 2</td>
<td></td>
</tr>
<tr>
<td>p = 3</td>
<td>0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1</td>
<td>eliminate multiples of 3</td>
<td></td>
</tr>
<tr>
<td>p = 5</td>
<td>0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1</td>
<td>eliminate multiples of 5</td>
<td></td>
</tr>
<tr>
<td>p = 7</td>
<td>0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>p = 11</td>
<td>0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p = 13</td>
<td>0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p = 17</td>
<td>0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>accept</td>
<td>0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- But, the tape head can only move one square at a time.
Using Markers

We'll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.

- We'll initially place the blue marker at the zero position of the tape,
- and we’ll initially place the red marker on the square for the current prime.

Now, we'll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime

- We’ll write a 0 on the square for the red marker,
- and we’ll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
We’ll prepend a left end-marker, |- to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.

- We’ll initially place the blue marker at the zero position of the tape,
- and we’ll initially place the red marker on the square for the current prime.

Now, we’ll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime
- We’ll write a 0 on the square for the red marker,
- and we’ll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
Using Markers

We'll prepend a left end-marker, ⊢, to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.

- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.

Now, we'll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime

- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
Using Markers

We’ll prepend a left end-marker, ⊤ to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.

- We’ll initially place the blue marker at the zero position of the tape,
- and we’ll initially place the red marker on the square for the current prime.

Now, we’ll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime
- We’ll write a 0 on the square for the red marker,
- and we’ll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
Using Markers

We’ll prepend a left end-marker, ⊤ to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.
 - We’ll initially place the blue marker at the zero position of the tape,
 - and we’ll initially place the red marker on the square for the current prime.

Now, we’ll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime
 - We’ll write a 0 on the square for the red marker,
 - and we’ll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
Using Markers

- We’ll prepend a left end-marker, ⊢ to the tape. Note that this is at the “zero” position for the string.

- Imagine that we have two markers, a blue one and a red one.
 - We’ll initially place the blue marker at the zero position of the tape,
 - and we’ll initially place the red marker on the square for the current prime.

- Now, we’ll repeatedly move both markers to the right one square at a time.

- When the blue marker reaches the square for the current prime
 - We’ll write a 0 on the square for the red marker,
 - and we’ll return the blue marker to the zero position.

- We repeat this until the red marker reaches a □, the end of the string.
We’ll prepend a left end-marker, \vdash to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.

- We’ll initially place the blue marker at the zero position of the tape,
- and we’ll initially place the red marker on the square for the current prime.

Now, we’ll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime
- We’ll write a 0 on the square for the red marker,
- and we’ll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
Using Markers

We'll prepend a left end-marker, \vdash to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.
- We’ll initially place the blue marker at the zero position of the tape,
- and we’ll initially place the red marker on the square for the current prime.

Now, we'll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime
- We’ll write a 0 on the square for the red marker,
- and we’ll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
We’ll prepend a left end-marker, ⊤ to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.

- We’ll initially place the blue marker at the zero position of the tape,
- and we’ll initially place the red marker on the square for the current prime.

Now, we’ll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime

- We’ll write a 0 on the square for the red marker,
- and we’ll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
We’ll prepend a left end-marker, ⊤, to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.

- We’ll initially place the blue marker at the zero position of the tape,
- and we’ll initially place the red marker on the square for the current prime.

Now, we’ll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime
- We’ll write a 0 on the square for the red marker,
- and we’ll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
Using Markers

We'll prepend a left end-marker, ⊢ to the tape. Note that this is at the “zero” position for the string.

Imagine that we have two markers, a blue one and a red one.

We'll initially place the blue marker at the zero position of the tape, and we'll initially place the red marker on the square for the current prime.

Now, we'll repeatedly move both markers to the right one square at a time.

When the blue marker reaches the square for the current prime

We'll write a 0 on the square for the red marker, and we'll return the blue marker to the zero position.

We repeat this until the red marker reaches a □, the end of the string.
A TM for 1^p
How it works (states $q_0 \ldots q_3$)

- Omitted edges are to the reject state:
 - Most such edges can never be taken.
 - Real rejects occur from states q_0, q_1 and q_9 when reading a \square.

- States $q_0 \ldots q_3$ initialize the computation:
 - $q_0 \rightarrow q_1$ writes the left endmarker on the tape.
 - $q_1 \rightarrow q_2$ makes sure that there are at least two inputs in the input. If the machine encounters a \square on either of the first two squares, it rejects.
 - $q_2 \rightarrow q_3$ marks 2 as the first prime.
 - q_3 reads to the end of the tape, and then
 - $q_3 \rightarrow q_4$ appends a 1 to make up for the leftmost 1 that was overwritten with the \vdash symbol.
How it works (states \(q_4 \ldots q_7 \))

- State \(q_4 \) moves the head to the left to the square with the “blue” marker. That is either a 0′, 1′ or \(\vdash \).

- States \(q_4 \ldots q_7 \) move the markers to the right:
 - \(q_4 \rightarrow q_5 \) removes the left marker from the previous square.
 - \(q_5 \rightarrow q_6 \) places the left marker on the next square. If that square held the \(p \) symbol, that means we’ve moved \(p \) positions and the machine transitions to state \(q_{11} \) to set the corresponding square at the right marker to 0 (described below).
 - \(q_6 \) moves to the right until the right marker is found. If the machine encounters a \(\square \) first, that means we’re done scanning for the multiples of the current prime. The machine transitions to state \(q_8 \) to determine the next prime to check.
 - \(q_6 \rightarrow q_7 \) and \(q_7 \rightarrow q_8 \) move the right marker one square to the right. Then the machine goes back to state \(q_4 \) to return the head to the left marker and start the next round.
How it works (states $q_8 \ldots q_{10}$)

- States $q_8 \ldots q_{10}$ look for the next prime. a multiple of the current prime.
 - q_8 moves to the left to find the current prime.
 - $q_8 \rightarrow q_9$ changes the p symbol to a 1.
 - q_9 moves to the right to find a square marked with a 1 (indicating a prime).
 - $q_9 \rightarrow q_{10}$ marks that prime with p'.
 If no such prime is found, then the last square on the tape must be marked with a zero (i.e. it is not a prime). The machine encounters a \square and rejects.
 - q_{10} moves to the left, clearing the left marker on the way. This means that the left-marker is on the \vdash square, leaving the machine ready to eliminate multiples of the new prime.
How it works (states $q_{11} \ldots q_{13}$)

- States $q_{11} \ldots q_{13}$ write a 0 on a square that is a multiple of the current prime.
 - $q_{11} \rightarrow q_{\text{accept}}$:
 - If the symbol following the square for the prime is a □, then the input string was 1^p where p is the current prime. The machine accepts.
 - Otherwise, the machine moves to the right, $q_{11} \rightarrow q_{12}$, to start looking for the right marker.
 - If the right marker is immediately after the prime, the machine move directly from state q_{11} to q_{13}. This happens when $p = 2$ and the right marker is on the square for 3.
 - q_{12} the machine moves to the right looking for the right marker.
 - $q_{12} \rightarrow q_{13}$ the machine moves the right marker one square to the right.
 - $q_{13} \rightarrow q_{4}$ if the next square is either a 0 or a 1, the machine writes a 0 (to indicate that the square is in a non-prime position) and marks it for the next round of the scan.
A TM that acts like a “real” computer

The tape
Data manipulation
Making the TM programmable
The Tape

The tape is of the form

$$\Psi x_0 \Psi x_1 \Psi \cdots \Psi x_n \Psi \square^*$$

where

- Each x_i is in $L(1^*)$. If $x_i = 1^j$, then x_i represents the integer j.
- This unary encoding is inefficient (uses lots of tape), but tape is free 😊.
- We could describe a machine that used binary (or decimal, etc.) for its number representations, but that would add extra details to the description that aren’t critical for our point that we can make a programmable computer.

- Each Ψ is a # symbol followed by a string in $\{A, B, P\}^*$.
 - The tape has exactly one A, exactly one B and exactly one P.
 - The symbols A, B and P mark words that the “program” is currently manipulating.
Operation: insert a 1

- Add states q_{11}, $q_{1\#}$, q_{1A}, q_{1B}, q_{1P}, and $q_{1\Box}$ with the following transitions:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>#</th>
<th>A</th>
<th>B</th>
<th>P</th>
<th>□</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{11}</td>
<td>(1, q_{11})</td>
<td>(1, $q_{1#}$)</td>
<td>(1, q_{1A})</td>
<td>(1, q_{1B})</td>
<td>(1, q_{1P})</td>
<td>(1, $q_{1\Box}$)</td>
</tr>
<tr>
<td>$q_{1#}$</td>
<td>(#, q_{11})</td>
<td>(#, $q_{1#}$)</td>
<td>(#, q_{1A})</td>
<td>(#, q_{1P})</td>
<td>(#, q_{1P})</td>
<td>(#, $q_{1\Box}$)</td>
</tr>
<tr>
<td>q_{1A}</td>
<td>(A, q_{11})</td>
<td>(A, $q_{1#}$)</td>
<td>(A, q_{1A})</td>
<td>(A, q_{1B})</td>
<td>(A, q_{1P})</td>
<td>(A, $q_{1\Box}$)</td>
</tr>
<tr>
<td>q_{1B}</td>
<td>(B, q_{11})</td>
<td>(B, $q_{1#}$)</td>
<td>(B, q_{1A})</td>
<td>(B, q_{1B})</td>
<td>(B, q_{1P})</td>
<td>(B, $q_{1\Box}$)</td>
</tr>
<tr>
<td>q_{1P}</td>
<td>(P, q_{11})</td>
<td>(P, $q_{1#}$)</td>
<td>(P, q_{1A})</td>
<td>(P, q_{1B})</td>
<td>(P, q_{1P})</td>
<td>(P, $q_{1\Box}$)</td>
</tr>
</tbody>
</table>

- The entry in row q column c is a tuple of the form (c', q'). When the machine is in state q and there is a c on the current tape square, the machine writes a c' on the tape, and transitions to state q' and moves to the rights.
Inserting a 1: explanation

- This machine-fragment starts in state q_{11} at the position where a 1 should be inserted and ends in state $q_{1\square}$ having inserted the one.

- Initially,
 - The machine writes a 1,
 - Uses its finite state to store the value of the tape symbol that it overwrote, and
 - moves one square to the right.

- At each subsequent step
 - The machine writes the symbol from the previous square,
 - Uses its finite state to store the value of the symbol that was at this square, and
 - moves one square to the right.

- When it reaches the end of the tape string (i.e. a \square)
 - The machine writes the symbol from the previous square and
 - moves one square to the right, entering state $q_{1\square}$.
 - The rest of the TM can “connect” with state $q_{1\square}$ to continue the computation.
Deleting a symbol

We add states to:

- Write a □ at the current tape position and move to the right.
- Continue moving to the right until we reach another □ (the end of the tape string).
- Use a variation of the “insert a 1” procedure to “insert” another blank on the last non-blank square of the tape, and go to the left, copying the overwritten symbols until we reach the □ at we wrote at the beginning.
- Now, the symbol that we had wanted to delete is gone, and the string to its right has been shifted over one tape square.
The resetA “instruction”

- Move the A marker to the first $\#$ (i.e. have it mark x_0).

loop { Move left to the endmarker, \vdash.
Move right two squares (one after the first $\#$).
Insert a A (like inserting a 1 as described above).
Move to the left (from the right end of the tape) until reaching the previous A.
Delete the previous A (as described above).
}
The clrA “instruction”

- Set the word marked by A to 1^0 (a.k.a. ϵ).

```
loop { Move left to the endmarker, $\vdash$.
  Move to the right until reaching the $A$.
  Move to the right past the $A$ and any other markers
    (i.e. $B$ or $P$).
  if the current symbol is a $1$
    delete it (as described above).
  else exit-loop.
}
```
The incrA “instruction”

- Add one to the word marked by A.

Move left to the endmarker, \vdash.
Move to the right until reaching the A.
Move to the right past the A and any other markers (i.e. B or P).
Insert a 1 as described above.
The addAB "instruction"

- Replace the word marked by A with the sum of the word marked by A and the word marked by B.

 Move left to the endmarker, \vdash.
 Move to the right until reaching the B.
 Move to the right past the B and any other markers (i.e. A or P).
 while the current symbol is a 1 {
 Mark the current symbol (i.e. change it to 1').
 Increment the word marked by A (see the incrA instruction).
 Move to the 1'.
 Unmark it and move one square to the right.
 if the current symbol is a #, exit-loop.
}

- Other "ALU instructions" can be implemented in a similar manner.
The moveAB “instruction”

- Let x_B be the value of the word marked by the B marker. Move A to mark x_B.

- For example, if B marks word 5, and A marks word 17, and $x_5 = 42$ and $x_{17} = 2$, then executing moveAB will
 - Set A to mark word 42.
 - Leave B marking word 5.
 - The rest of the values on the tape are unchanged.
Implementing moveAB

- Move left to the endmarker, ⊢.
 Move to the right until reaching the A.
 Delete the A.
 Move left to the endmarker, ⊢.
 Write an A after the first #.
 for each 1 in the word marked by B {
 Move the A marker one # to the right.
 (If there is not such #, append #’s to the end of
 the tape string as needed.)
 }

- This lets us move the markers to arbitrary locations on the tape – in
 other words, it provides memory access.

- Note that by appending #’s onto the tape as needed, our TM
 computer never runs out of memory.
Instruction summary

- We now have basic instructions for data manipulation:
 - resetA: Move the A marker to word x_0.
 - clrA: Set the word marked by A to 0.
 - incrA: Add one to the word marked by A.
 - addAB: Replace the word marked by A with the sum of the words marked by A and B.
 - moveAB: Move the A marker to the word indicated by the word marked by the B marker.

- We could make similar “instructions” manipulating the word marked by the B (or P) markers.
 - For example, moveAA sets the A marker to the word indicated by the word at the current position of the A marker.
 - If A marks x_{17}, and x_{17} holds the value 1^{42}, then moveAA will set the A marker to mark word x_{42}.

20 October 2008 – p.21/24
An example

- Copy the word marked by B to x_5:

 resetA A now marks x_0
 clrA $x_0 \leftarrow 0$
 incrA $x_0 \leftarrow 1$
 incrA $x_0 \leftarrow 2$
 incrA $x_0 \leftarrow 3$
 incrA $x_0 \leftarrow 4$
 incrA $x_0 \leftarrow 5$
 moveAA A now marks x_5
 clrA $x_5 \leftarrow 0$
 addAB $x_5 \leftarrow x_B$

 where x_B is the value of the word marked by B.

- But how do we store and execute instructions?
the P marker is the “program counter.”

I added instructions for accept and reject.

The testA instruction implements a branch:

- if the word marked by A is non-zero, then next instruction is executed normally.
- otherwise, the f states provide alternative implementations of each instruction.
This week

● Reading
 ● October 20 (Today): Sipser 3.2.
 ● October 22 (Wednesday): Sipser 3.3.
 ● October 24 (Friday): Sipser 4.1.

● Homework
 ● October 20 (Today): Homework 5 due.
 ● October 24 (a week from today): Homework 6 due; homework 7 goes out.