Regular Expressions and Non-Regular Languages

Mark Greenstreet, CpSc 421, Term 1, 2008/09
Finishing the proof that the set of languages generated by regular expressions is the set of regular language.

In the Sept. 17 lecture, we showed that every language generated by a regular expression is a regular language.

- Given a regular expression, R, we constructed an NFA, N, such that $L(N) = L(R)$. Because $L(N)$ is regular, so is $L(R)$.

Today, we will show that every regular language can be generated by a regular expression.

- Given a regular language, A, we know that there is some DFA, M, that recognizes A. We will construct a regular expression, R, such that $L(R) = L(M)$.

A language that is not regular.
Observation: DFA edges are labeled with symbols. A symbol or set symbols corresponds to a regular expression.

Proof Idea: treat DFA edges as regular expressions.

- If edge \((q_i, q_j)\) is labeled with regular expression \(re_{i,j}\), that means that the machine can move from state \(q_i\) to \(q_j\) by reading any string that matches \(re_{i,j}\).

- In general, such a machine isn’t a DFA. Sipser calls this a GNFA, and we’ll do the same.

- If a GNFA has only two states, an initial state \(q_0\) and a final state \(q_\$\), where \(q_\$\) is accepting and \(q_0\) is not, then the language recognized by the GNFA is the language generated by the regular expression for edge \((q_0, q_\$)\).
A GNFA with one intermediate state

We eliminate the state by accounting for all paths through the state. In this case, the only such path is one the one from q_0 to q_s.
A GNFA with two intermediate states

\[re'_{0,1} = re_{0,1} \cup \left(re_{0,2} \cdot re_{2,2}^* \cdot re_{2,1} \right) \]
\[re'_{1,1} = re_{1,1} \cup \left(re_{1,2} \cdot re_{2,2}^* \cdot re_{2,1} \right) \]
\[re'_{0,$} = re_{0,$} \cup \left(re_{0,2} \cdot re_{2,2}^* \cdot re_{2,$} \right) \]
\[re'_{1,$} = re_{1,$} \cup \left(re_{1,2} \cdot re_{2,2}^* \cdot re_{2,$} \right) \]
Defining GNFA

Let $\mathcal{R}(\Sigma)$ denote the set of all regular expressions with alphabet Σ.

Let $(Q, \Sigma, \lambda, q_0, q_\$$)$ be a GNFA where

$\lambda : (Q - \{\$$\}) \times (Q - \{q_0\}) \rightarrow \mathcal{R}(\Sigma)$ is a labeling of transitions with regular expressions.

- Note: λ provides a label for every pair of states (that doesn’t start with $q_\$$ or end with q_0).

 If there are no paths from q_i to q_j, then $\lambda(q_i, q_j) = \emptyset$.

Let G be a GNFA, the language recognized by G, $L(G)$ is the set of all strings s, such that

- There exists string $y_1, y_2, \ldots y_m$ such that $s = y_1 \cdot y_2 \cdots y_m$;

- There exists states $r_0, r_1, \ldots r_m$ such that:
 - $r_0 = q_0$;
 - y_i is generated by $\lambda(r_{i-1}, r_i)$;
 - $r_m = q_\$$.
Shrinking a GNFA

Let \(G_k = (Q_k, \Sigma, \lambda_k, q_0, q_\$) \) be a GNFA with \(Q = \{q_0, q_1, \ldots, q_k, q_\$\} \).

If \(k > 0 \), let \(Q_{k-1} = Q - \{q_k\} \).

For \(q_i, q_j \in Q_{k-1} \), let

\[
\lambda_{k-1}(q_i, q_j) = \lambda_k(q_i, q_j) \cup (\lambda_k(q_i, q_k) \cdot \lambda_k(q_k, q_k)^* \cdot \lambda_k(q_k, q_j))
\]

Let \(G_{k-1} = (Q_{k-1}, \Sigma, \lambda_{k-1}, q_0, q_\$) \).

Claim: \(L(G_{k-1}) = L(G_k) \).
\[L(G_{k-1}) \subseteq L(G_k) \]

Proof sketch:

- For any \(s \in L(G_{k-1}) \), we can find \(y_1 \ldots y_m \) be strings and \(r_0 \ldots r_m \) that satisfy the acceptance conditions from slide 6.

- For each “transition” that \(G_{k-1} \) makes for these sequences:
 - If \(G_k \) can make the same “transition”, we have \(G_k \) do that.
 - Otherwise, the transition must correspond to a regular expression for going from \(q_i \) to \(q_k \) and on to \(q_j \). We construct a sequence of transitions for \(G_k \) that does the same thing.

- This gives us a sequence of strings \(y'_1 \ldots y'_m \) and a sequence of states \(r'_0 \ldots r'_m \) that show that \(G_k \) accepts \(s \).

- For more details, see slides 13 through 16.
The proof is similar to the $L(G_{k-1} \subseteq L(G_k)$ case. Sketch:

- For any $s \in L(G_k)$, we can find $y_1 \ldots y_m$ be strings and $r_0 \ldots r_m$ that satisfy the acceptance conditions from slide 6.

- Now, the special case is when G_k makes a transition to state q_k (which doesn’t exist for G_{k-1}).
 - We note that $q_k \neq r_0$, and $q_k \neq q$.
 - Thus, we can find a sequence of transitions for G_k that starts in a state other than q_k, ends in a state other than q_k, where all of the states in the middle are q_k.
 - G_{k-1} can read the string for that entire sequence of transitions of G_k in a single move. This follows directly from how we accounted for moves through q_k when constructing the labels for G_{k-1} for going from q_i to q_k and on to q_j. We construct a sequence of transitions for G_k that does the same thing.

- This gives us a sequence of strings $y'_1 \ldots y'_m$, and a sequence of states $r'_0 \ldots r'_m$ that show that G_{k-1} accepts s.

- I might add slides with details later.
Last Friday, we showed that every DFA is an NFA.

- On Monday, we showed that every NFA is a DFA.
- On Wednesday, we showed that every regular expression generates a language recognized by an NFA.
- Today, we showed that every DFA recognizes a language that can be generated by a regular expression.

\[\therefore \text{DFAs, NFAs and regular expressions all describe the same set of languages.} \]
A non-regular language: $a^n b^n$

Discuss in class.
A non-regular language: \(a^n b^n \)

Proof by contradiction:

If \(a^n b^n \) were are regular language, then there would be some DFA, \(M \), that recognizes it. For the sake of contradiction, assume that such a machine exists.

\(M \) has some fixed number of states. Let \(k \) be this number.

Consider the string \(a^k \). \(M \) visits \(k + 1 \) states from its initial state through reading \(a^k \) (including both the initial state and the state reached after reading \(a^k \)).

Therefore, there is at least one state that \(M \) visits at least twice (the “Pigeon Hole” principle).

Thus we can find \(i \) and \(j \) with \(0 \leq i, j \leq k \) and \(i \neq j \) such that \(M \) is in the same state after reading \(a^i \) as it is after reading \(a^j \).

This means that strings \(a^i b^i \) and \(a^j b^i \) bring \(M \) to the same state. Therefore, either \(M \) accepts both \(a^i b^i \) and \(a^j b^i \) or it rejects them both.

However, \(a^i b^i \) is in the language and \(a^i b^j \) is not.

Therefore, \(M \) cannot recognize the language \(a^n b^n \).
The coming week

Reading:

Lecture will cover through Example 1.73 (i.e. pages 77-80).

September 22 (Monday): Pumping Lemma Examples.
The rest of Sipser 1.4 (i.e. pages 80–82).

September 24 (Wednesday): Introduction to Context Free Languages – Sipser 2.1.
Lecture will cover through “Designing Context-Free Grammars” (i.e. pages 99-105).

September 26 (A week from today): Chomsky Normal Form
The rest of Sipser 2.1 (i.e. pages 105–109).

Homework:

September 19 (Today): Homework 1 due. Homework 2 goes out (on the web, later today, due Sept. 26).

September 26 (A week from Today): Homework 2 due. Homework 3 goes out (due Oct. 3).
The due date for homework 3 will be strict – no late assignments will be accepted.

Midterm: Oct. 8
\[L(G_{k-1}) \subseteq L(G_k) \]

Proof details:

- Let \(s \in L(G_{k-1}) \). Let \(y_1 \ldots y_m \) be strings and \(r_0 \ldots r_m \) be states that show that \(s \in L(G_{k-1}) \) as specified on slide 6.

- Our strategy now is to find a sequence of strings and states that show that \(s \in L(G_k) \).
 - The intuitive idea is that a transition from \(q_i \) to \(q_j \) by \(G_{k-1} \) either corresponds to the same transition for \(G_k \), or \(G_k \) goes from \(q_i \) to \(q_k \), performs zero or more self-loops at \(q_k \) and then transitions to \(q_j \).
 - Thus, each transition of \(G_{k-1} \) corresponds to either one or three steps of \(G_k \).
 - We’ll define \(f(n) \) to map step numbers of \(G_{k-1} \) to step numbers of \(G_k \).
\[L(G_{k-1}) \subseteq L(G_k) \] (cont)

- \(f(1) = 1 \).
- For each \(1 \leq i \leq m \)
 - Note that \(y_i \in L(\lambda_{k-1}(r_{i-1}, r_i)) \), and that
 \[\lambda_{k-1}(r_{i-1}, r_i) = \lambda_k(r_{i-1}, r_i) \cup (\lambda_k(r_{i-1}, q_k) \cdot \lambda_k(q_k, q_k)^* \cdot \lambda_k(q_k, r_i)) \]
 - If \(y_i \in L(\lambda_k(r_{i-1}, r_i)) \), let
 \[
 \begin{align*}
 y'_{f(i)} & = y_i \\
 r'_{f(i)} & = r_i \\
 f(i + 1) & = f(i) + 1
 \end{align*}
 \]
 - Otherwise, \(y_i \in L(\lambda_k(r_{i-1}, q_k) \cdot \lambda_k(q_k, q_k)^* \cdot \lambda_k(q_k, r_i)) \), and (continued on next slide)
$L(G_{k-1}) \subseteq L(G_k)$ (cont)

- For each $1 \leq i \leq m$
 - If $y_i \in L(\lambda_k(r_{i-1}, q_k) \cdot \lambda_k(q_k, q_k)^* \cdot \lambda_k(q_k, r_i))$, then
 - There are strings z_0, z_1, \ldots, z_h such that

 \[
 y_i = z_0 \cdot z_1 \cdots z_h; \\
 z_0 \in L(\lambda_k(r_{i-1}, q_k)); \\
 z_d \in L(\lambda_k(q_k, q_k)), \quad \text{for all } 1 \leq d < h; \\
 z_h \in L(\lambda_k(q_k, r_i)).
 \]

- Let

 \[
 y'_{f(i)+d} = z_d, \quad \text{for all } 0 \leq d \leq h; \\
 r'_{f(i)+d} = q_k, \quad \text{for all } 0 \leq d < h; \\
 r'_{f(i)+h} = r_i; \\
 f(i+1) = f(i+j)
 \]
$L(G_{k-1}) \subseteq L(G_k)$ (cont)

- The sequences of strings $y'_1 \ldots y'_{f(m)}$ and states $r'_0 \ldots r'_{f(m)}$ satisfy the conditions for GNFA acceptance (slide 6).

- Thus, G_k accepts s.