
Research Advertisement
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v Today’s NP-Completeness Example: SUBSET-SUM

v Research Advertisement
u Parallel Computing

u Circuit Verifcation

CpSc 421 — 28 November 2008 – p.1/21



SUBSET SUM
v Instance:

u Let S be a set,
u Let w : S → Z

+ be a function that gives the “weight” of elements of s.

u Let t be an integer.

v Question: Is there a set C ⊆ S such that the sum of the weights of
the elements of C is equal to t?

v SUBSET SUM is NP-complete
u It is easy to see that SUBSET SUM in NP, proposing a set C suffices as a

certificate.
t Such a subset is shorter than the original input, thus its size is polynomial in

the length of the input.
t Checking that C ⊆ S and that

P

m∈C m = t are straightforward and
polynomial time.

u To show that SUBSET SUM is NP hard, we reduce one-in-three 3SAT to

SUBSET SUM.

CpSc 421 — 28 November 2008 – p.2/21



SUBSET SUM: Details

CpSc 421 — 28 November 2008 – p.3/21



Verifying the Reduction

CpSc 421 — 28 November 2008 – p.4/21



PARTITION is NP-Complete
v Problem instance: a finite set S and a weight function w : S → Z

+.

v Question: Can S be partitioned into 2 disjoint sets, S1, S2 such that
∑

s∈S1
s =

∑
s ∈ S2s?

v PARTITION is NP-complete. Proof: by reduction from SUBSET
SUM.

CpSc 421 — 28 November 2008 – p.5/21



Dynamic Programming
u If there is some subset of S whose sum equals t, we can perform that sum in

order of increasing weights of the elements. Let w1, . . . , wm be this sequence
of weights.

u This leads to a dynamic programming algorithm for solving SUBSET SUM.

SubsetSum(Set<int> s, int t) {
int[1 . . . t] x; /* initially all elements set to m + 1 */
for int i = 1. . . t do {

for j = 1. . . m do {
if((wj == i) | ((wj < i) & (x[i-wj ] < wj ))) {

x[i] = j;
break; /* for m */

}
}

}
return(x[t] ≤ m);

}

This algorithm runs in O(t2) time!

CpSc 421 — 28 November 2008 – p.6/21



Weak vs. strong NP completeness
v A numerical problem has a pseudo-polynomial time complexity if it

can be decided in time that is a polynomial in the values of the
numbers occuring in the input.

u SUBSET SUM has a pseudo-polynomial decision procedure.

v For a numerical problem with input I, let Length(I ) be the number
of symbols in I and Max (I) be the largest (in absolute value)
integer encoded by I.

v If there is a polynomial p such that a problem, X , is NP-complete
when restricted to inputs I with

Max (I) ≤ p(Length(I))

then we say that X is strongly NP-complete.

v Less formally, X is strongly NP-complete if there is no
pseudo-polynomial decision procedure for X (unless P = NP).

CpSc 421 — 28 November 2008 – p.7/21



3-Partition is Strongly NP-Complete
v Problem instance: a finite set S of 3m positive integers, a positive

integer b, such that each s ∈ S satisfies b/4 < s < b/2, and such
that

∑
s∈S

s = mb.

v Question: Can S be partitioned into m disjoint sets, S1, S2, . . . Sm

such that for every 1 ≤ i ≤ m,
∑

s∈Si
s = b?

v Note: by the constraints on S, each of the Si must have exactly
three elements.

The material here on strong NP completeness is based on chapter

4 of Garey & Johnson, “Computers and Intractability.”

CpSc 421 — 28 November 2008 – p.8/21



Multiprocessor Scheduling
v Problem instance:

u a set, T of tasks,
u an integer-valued function l(t) that for each t ∈ T says how long task t takes to

run,
u a positive integer, p, the number of processors,

u a positive integer d, the deadline.

v Question: Can tasks be assigned to processors such that all tasks
complete by the deadline?

v NP-completeness:
u Multi-processor scheduling is NP-complete for any p ≥ 2: proof by reduction

from PARTITION.
u Pseudo-polynomial time decision procedures exist for any fixed p (but the

degree of the polynomial grows with p).

u Multi-processor scheduling is NP-complete in the strong sense when p is

allowed to be arbitrary: proof by reduction from 3-PARTITION.

CpSc 421 — 28 November 2008 – p.9/21



Parallel Computing
Areas of interest:

v Parallel architectures

v Applications of parallel computing

v Energy-time trade-offs in computation

v Compilers and other system software for parallel computation

CpSc 421 — 28 November 2008 – p.10/21



Superscalar Architectures:old ILP
v Fetch several (∼ 4) instructions per cycles.

v Rename registers:
u A logical register to physical register mapping, similar to virtal memory.

u Keeps track of data dependencies between instructions.

v Send renamed instructions to issue queues of functional units.
u When an instruction has its operands, it can execute.

u Because the machine has multiple functional units, it can execute multiple

instructions per cycle.

v Key issues:
u Need to wait to commit an instruction until all previous instructions commit.
u To find instructions that can execute in parallel, need to fetch beyond pending

branches.
t This requires branch speculation.

CpSc 421 — 28 November 2008 – p.11/21



Merging on a Superscalar
while(x < xtop && y < ytop) {

if(*x < *y) *z++ = *x++;
else *z++ = *y++;

}

v Data dependent branch in each iteration

v Any branch predictor wrong 50% of time for random data

v High mispredict penalties leads to low perofrmance

CpSc 421 — 28 November 2008 – p.12/21



Tiny Processing Elements (TPEs)

Code Block Registers

ALU

PC

Inter−TPE
network

(8)

Local OutputInput
regs regsregs

(4x4)

comm
interface

decode

Instruction Fetch

v Divide a “core” into many small processors

v Each has its own instruction store and fetch

v Heterogeneous in the small,
u homogeneous in the large(?)

v Communication through registers with FIFO semantics

CpSc 421 — 28 November 2008 – p.13/21



Merging on a TPE cluster

cache/
mem

cache/
mem

ALU

read x compare read y

write z

cache/
mem

v Separate cache-TPEs fetch x and y streams.

v Another TPE merges the two streams.

v A fourth TPE writes the result back to cache/memory.

v The fetch and store TPEs make progress regardless of the branch outcome for the

compare TPE.

CpSc 421 — 28 November 2008 – p.14/21



TPE Research Questions
v How to take advantage of multiple instruction streams for executing

a single thread.

v How to write a compiler for TPEs:
u Compilers for traditional (C, C++, Java) languages.

u Compilers for languages with explicit parallelism.

v On-chip network design.

v Power vs. speed trade-offs.

v . . .

CpSc 421 — 28 November 2008 – p.15/21



Why do Circuit-Level Verification?
v Digital design has become relatively low error:

u Systematic design flows.
u Lots of simulation.
u Equivalence checking.

u Model checking.

v Circuit-level bugs remain a problem:
u SPICE is still the main validation tool, and it doesn’t scale.
u Deep-submicron circuit effects undermine digital abstractions.

u Hard/impossible to simulate bugs.

CpSc 421 — 28 November 2008 – p.16/21



Arbiters
arbiter
r1

g1 g2
client 1 client 2

r2

v Specification
u Initially: ¬r1 ∧ ¬r2 ∧ ¬g1 ∧ ¬g2.
u Assume: �ri U gi, �¬ri U ¬gi.
u Guarantee:

t Handshake: �¬gi U ri, �gi U ri.t Mutual Exclusion: �¬(g1 ∧ g2).t Liveness: �(r1 ⊕ r2) ⇒ ♦(g1 ⊕ g2) ∨ (r1 ∧ r2), �¬ri ⇒ ♦¬gi.
Note: because metastability is unavoidable, no arbiter can guarantee
�(r1 ∧ r2) ⇒ ♦(g1 ∨ g2).

v Why Verify an Arbiter?
u Exercise in modeling concurrent events from the environment.

u Requires handling a non-trivial circuit behavior: metastability.

CpSc 421 — 28 November 2008 – p.17/21



Specifying an Arbiter
V

V

V

l h

h

Vl

V

V

V

1
2

4

3

1 2 3 4 1

t

1

v Specifying signal behavior – Brockett’s annulus:
u Region 1 represents a logical low signal. The signal may wander in a small

interval.
u Region 2 represents a monotonically rising signal.
u Region 3 represents a logical high signal.
u Region 4 represents a monotonically falling signal.

u Brockett’s annulus allows entire families of signals to be specified.

CpSc 421 — 28 November 2008 – p.18/21



Coho: Reachability Using Projections
v Coho projects high dimensional

polyhedron onto two-dimensional
subspaces.

v A projectagon is the intersection
of a collection of prisms,
back-projected from the projection
polygons.

v Coho computes reachable sets

by integrating over a series of

timesteps:

yx

z

Projections

Maximal
Reachable
Space

y

x y

z z

x

yx

z

uA bounding projectagon is obtained by moving each face forward in time.

uProjectagon faces correspond to projection polygon edges; thus, Coho works on
one edge at a time.

from: http://pond.dnr.cornell.edu/
CpSc 421 — 28 November 2008 – p.19/21



Results
v Safety Properties

u Mutual Exclusion
u Handshake Protocol

u Brockett Annuli

v Liveness Properties
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

g1

g2

Mutual Exclusion

CpSc 421 — 28 November 2008 – p.20/21



Results
v Safety Properties

u Mutual Exclusion
u Handshake Protocol

u Brockett Annuli

v Liveness Properties
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

request

gr
an

t

Handshake

CpSc 421 — 28 November 2008 – p.20/21



Results
v Safety Properties

u Mutual Exclusion
u Handshake Protocol

u Brockett Annuli

v Liveness Properties

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

10

ẋ vs. x ġ vs. g.
Brockett Annuli

CpSc 421 — 28 November 2008 – p.20/21



Results

v Safety Properties
u Mutual Exclusion
u Handshake Protocol

u Brockett Annuli 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

request

gr
an

t

Handshake
v Liveness Properties:

u Initialization: stable within 200ps
u Uncontested Requests: grant the client within 350ps
u Contested Requests: metastability within hyper-rectangle

r1 ∈ B3 x1 ∈ [0.55, 1.3] g1 ∈ B1

r2 ∈ B3 x2 ∈ [0.55, 1.3] g2 ∈ B1

u Reset: withdraw grants within 270ps

u Fairness: grant the other client within 420ps

CpSc 421 — 28 November 2008 – p.20/21



The last slide
v Dec. 1: HW 11 due at 4pm.

v Dec. 1, 3, 5: office hour from 1-2pm.

v Dec. 6: final exam, 3:30-6:30pm, CHBE 103

Thanks to all of you for a good term! �
��pp p

CpSc 421 — 28 November 2008 – p.21/21


	SUBSET SUM
	SUBSET SUM: Details
	Verifying the Reduction
	PARTITION is NP-Complete
	Dynamic Programming
	Weak vs. strong NP completeness
	3-Partition is Strongly NP-Complete
	Multiprocessor Scheduling
	Parallel Computing
	Superscalar Architectures: {cred old ILP}
	Merging on a Superscalar
	Tiny Processing Elements (TPEs)
	Merging on a TPE cluster
	TPE Research Questions
	Why do Circuit-Level Verification?
	Arbiters
	Specifying an Arbiter
	Coho: Reachability Using Projections
	Results
	The last slide

