Research Advertisement

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- Today's NP-Completeness Example: SUBSET-SUM
- Research Advertisement
- Parallel Computing
- Circuit Verifcation

SUBSET SUM

- Instance:
- Let S be a set,
- Let $w: S \rightarrow \mathbb{Z}^{+}$be a function that gives the "weight" of elements of s.
- Let t be an integer.
- Question: Is there a set $C \subseteq S$ such that the sum of the weights of the elements of C is equal to t ?
- SUBSET SUM is NP-complete
- It is easy to see that SUBSET SUM in NP, proposing a set C suffices as a certificate.
- Such a subset is shorter than the original input, thus its size is polynomial in the length of the input.
- Checking that $C \subseteq S$ and that $\sum_{m \in C} m=t$ are straightforward and polynomial time.
- To show that SUBSET SUM is NP hard, we reduce one-in-three 3SAT to SUBSET SUM.

SUBSET SUM: Details

Verifying the Reduction

PARTITION is NP-Complete

- Problem instance: a finite set S and a weight function $w: S \rightarrow \mathbb{Z}^{+}$.
- Question: Can S be partitioned into 2 disjoint sets, S_{1}, S_{2} such that $\sum_{s \in S_{1}} s=\sum s \in S_{2} s ?$
- PARTITION is NP-complete. Proof: by reduction from SUBSET SUM.

Dynamic Programming

- If there is some subset of S whose sum equals t, we can perform that sum in order of increasing weights of the elements. Let w_{1}, \ldots, w_{m} be this sequence of weights.
- This leads to a dynamic programming algorithm for solving SUBSET SUM.

```
SubsetSum(Set<int> s, int t) \{
    \(\operatorname{int}[1 \ldots \mathrm{t}] \mathrm{x}\); /* initially all elements set to \(m+1\) */
    for int \(i=1 \ldots\) do \(\{\)
        for \(\mathrm{j}=1 . . . \mathrm{m}\) do \(\{\)
            \(\mathrm{if}\left(\left(w_{j}==\mathrm{i}\right) \mid\left(\left(w_{j}<\mathrm{i}\right) \&\left(x\left[\mathrm{i}-w_{j}\right]<w_{j}\right)\right)\right)\{\)
            \(\mathrm{x}[\mathrm{i}]=\mathrm{j}\);
            break; /* for m */
        \}
    \}
    \}
    return \((x[t] \leq m)\);
\}
```

This algorithm runs in $O\left(t^{2}\right)$ time!

Weak vs. strong NP completeness

- A numerical problem has a pseudo-polynomial time complexity if it can be decided in time that is a polynomial in the values of the numbers occuring in the input.
- SUBSET SUM has a pseudo-polynomial decision procedure.
- For a numerical problem with input I, let Length (I) be the number of symbols in I and $\operatorname{Max}(I)$ be the largest (in absolute value) integer encoded by I.
- If there is a polynomial p such that a problem, X, is NP-complete when restricted to inputs I with

$$
\operatorname{Max}(I) \leq p(\operatorname{Length}(I))
$$

then we say that X is strongly NP-complete.

- Less formally, X is strongly NP-complete if there is no pseudo-polynomial decision procedure for X (unless $\mathrm{P}=\mathrm{NP}$).

3-Partition is Strongly NP-Complete

- Problem instance: a finite set S of $3 m$ positive integers, a positive integer b, such that each $s \in S$ satisfies $b / 4<s<b / 2$, and such that $\sum_{s \in S} s=m b$.
- Question: Can S be partitioned into m disjoint sets, $S_{1}, S_{2}, \ldots S_{m}$ such that for every $1 \leq i \leq m, \sum_{s \in S_{i}} s=b$?
- Note: by the constraints on S, each of the S_{i} must have exactly three elements.

The material here on strong NP completeness is based on chapter
4 of Garey \& Johnson, "Computers and Intractability."

Multiprocessor Scheduling

- Problem instance:
- a set, T of tasks,
- an integer-valued function $l(t)$ that for each $t \in T$ says how long task t takes to run,
- a positive integer, p, the number of processors,
- a positive integer d, the deadline.
- Question: Can tasks be assigned to processors such that all tasks complete by the deadline?
- NP-completeness:
- Multi-processor scheduling is NP-complete for any $p \geq 2$: proof by reduction from PARTITION.
- Pseudo-polynomial time decision procedures exist for any fixed p (but the degree of the polynomial grows with p).
- Multi-processor scheduling is NP-complete in the strong sense when p is allowed to be arbitrary: proof by reduction from 3-PARTITION.

Parallel Computing

Areas of interest:

- Parallel architectures
- Applications of parallel computing
- Energy-time trade-offs in computation
- Compilers and other system software for parallel computation

Superscalar Architectures: old ILP

- Fetch several (~ 4) instructions per cycles.
- Rename registers:
- A logical register to physical register mapping, similar to virtal memory.
- Keeps track of data dependencies between instructions.
- Send renamed instructions to issue queues of functional units.
- When an instruction has its operands, it can execute.
- Because the machine has multiple functional units, it can execute multiple instructions per cycle.
- Key issues:
- Need to wait to commit an instruction until all previous instructions commit.
- To find instructions that can execute in parallel, need to fetch beyond pending branches.
- This requires branch speculation.

Merging on a Superscalar

$$
\begin{aligned}
& \text { while }(x<x t o p \& \& y<y t o p)\{ \\
& \text { if(*x<*} y){ }^{*} z++={ }^{*} x++; \\
& \text { else *} z++={ }^{*} y++ \\
& \}
\end{aligned}
$$

- Data dependent branch in each iteration
- Any branch predictor wrong 50\% of time for random data
- High mispredict penalties leads to low perofrmance

Tiny Processing Elements (TPEs)

- Divide a "core" into many small processors
- Each has its own instruction store and fetch
- Heterogeneous in the small,
- homogeneous in the large(?)

Communication through registers with FIFO semantics

Merging on a TPE cluster

- Separate cache-TPEs fetch x and y streams.
- Another TPE merges the two streams.
- A fourth TPE writes the result back to cache/memory.
- The fetch and store TPEs make progress regardless of the branch outcome for the compare TPE.

TPE Research Questions

- How to take advantage of multiple instruction streams for executing a single thread.
- How to write a compiler for TPEs:
- Compilers for traditional (C, C++, Java) languages.
- Compilers for languages with explicit parallelism.
- On-chip network design.
- Power vs. speed trade-offs.

Why do Circuit-Level Verification?

- Digital design has become relatively low error:
- Systematic design flows.
- Lots of simulation.
- Equivalence checking.
- Model checking.
- Circuit-level bugs remain a problem:
- SPICE is still the main validation tool, and it doesn't scale.
- Deep-submicron circuit effects undermine digital abstractions.
- Hard/impossible to simulate bugs.

Arbiters

- Specification
- Initially: $\neg r_{1} \wedge \neg r_{2} \wedge \neg g_{1} \wedge \neg g_{2}$.
- Assume: $\square r_{i} U g_{i}$, $\square \neg r_{i} U \neg g_{i}$.
- Guarantee:
- Handshake: $\square \neg g_{i} U r_{i}, \square g_{i} U r_{i}$.
- Mutual Exclusion: $\square \neg\left(g_{1} \wedge g_{2}\right)$.
- Liveness: $\square\left(r_{1} \oplus r_{2}\right) \Rightarrow \diamond\left(g_{1} \oplus g_{2}\right) \vee\left(r_{1} \wedge r_{2}\right)$, $\square \neg r_{i} \Rightarrow \diamond \neg g_{i}$. Note: because metastability is unavoidable, no arbiter can guarantee $\square\left(r_{1} \wedge r_{2}\right) \Rightarrow \diamond\left(g_{1} \vee g_{2}\right)$.
- Why Verify an Arbiter?
- Exercise in modeling concurrent events from the environment.
- Requires handling a non-trivial circuit behavior: metastability.

Specifying an Arbiter

- Specifying signal behavior - Brockett's annulus:
- Region 1 represents a logical low signal. The signal may wander in a small interval.
- Region 2 represents a monotonically rising signal.
- Region 3 represents a logical high signal.
- Region 4 represents a monotonically falling signal.
- Brockett's annulus allows entire families of signals to be specified.

Coho: Reachability Using Projections

- Coho projects high dimensional polyhedron onto two-dimensional subspaces.
- A projectagon is the intersection of a collection of prisms, back-projected from the projection polygons.
- Coho computes reachable sets by integrating over a series of
 timesteps:
- A bounding projectagon is obtained by moving each face forward in time.
- Projectagon faces correspond to projection polygon edges; thus, Coho works on one edge at a time.

Results

- Safety Properties
- Mutual Exclusion
- Handshake Protocol
- Brockett Annuli
- Liveness Properties

Mutual Exclusion

Results

- Safety Properties
- Mutual Exclusion
- Handshake Protocol
- Brockett Annuli
- Liveness Properties

Handshake

Results

- Safety Properties
- Mutual Exclusion
- Handshake Protocol
- Brockett Annuli
- Liveness Properties

\dot{x} vs. $x \quad \dot{g}$ vs. g. Brockett Annuli

Results

- Safety Properties
- Mutual Exclusion
- Handshake Protocol
- Brockett Annuli

Handshake

- Liveness Properties:
- Initialization: stable within 200ps
- Uncontested Requests: grant the client within 350ps
- Contested Requests: metastability within hyper-rectangle

$$
\begin{array}{lll}
r_{1} \in B_{3} & x_{1} \in[0.55,1.3] & g_{1} \in B_{1} \\
r_{2} \in B_{3} & x_{2} \in[0.55,1.3] & g_{2} \in B_{1}
\end{array}
$$

- Reset: withdraw grants within 270ps
- Fairness: grant the other client within 420ps

The last slide

- Dec. 1: HW 11 due at 4pm.
- Dec. 1, 3, 5: office hour from 1-2pm.
- Dec. 6: final exam, 3:30-6:30pm, CHBE 103

Thanks to all of you for a good term!

