

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- Today's NP-Completeness Example: One-in-three 3SAT
- Research Advertisement
 - Hybrid Automata
 - Circuit Verifcation
 - Parallel Computing

One-In-Three 3SAT

- Let f be a 3cnf formula. Does there exist a satisfying assignment where exactly one literal in each clause is satisfied?
- One-in-three 3SAT is NP complete.
 - It is easy to see that one-in-three 3SAT is in NP, an assignment of truth values to variables suffices as a certificate.
 - Such a list is shorter than the original input, thus its size is polynomial in the length of the input.
 - Checking that each clause has exactly one satisfied literal for the given assignment is straightforward and polynomial time.
 - To show that one-in-three 3SAT is NP hard, we show that we can reduce 3SAT to one-in-three 3SAT.
 - We add variables and rewrite each clause to produce a modified formula that is one-in-three satisifiable iff the original formula had any satisfying assignment.

One-In-Three 3SAT: Details

Verifying the Reduction

Monotone One-In-Three 3SAT

Ι

One-in-three 3SAT remains NP complete even if we only consider 3cnf formulas where no literals are negated.

Construct a clause that forces a particular variable, t to be true, and another variable, f to be false:

 $(t \vee f \vee f)$

If you think it was cheating to use the same variable twice in the same clause, we could use the clauses:

$$(f \lor b \lor c)(f \lor d \lor e)(f \lor g \lor h)$$
$$\land (b \lor d \lor g)(c \lor e \lor h)$$

We could make f_1 and f_2 in this fashion, and then use the clause $(t \lor f_1 \lor f_2)$ to create a variable that must be true.

Now, anytime we need the inverse of some variable, v, we just add the clause (v \neq vB \neq f). Any assignment that satisfies one-in-three 3SAT will assign opposite values to v and vB.

A Partitioning Problem

• Let U be a set. Let $C = \{C_{\infty}, C_{\in}, \dots, C_{\updownarrow}\}$ be a collection of subsets of U. Is there a set of disjoint sets, $\{S_1, S_2, \dots, S_k\}$ with each $S_i \in C$ such that the $\bigcup_{i=1}^k S_i = U$?

Sipser's Minesweeper Problem

• See Sipser problem 7.30.

Hybrid Automata

The Rambus Oscillator Challenge

Post-Silicon Debug

Parallel Computing

Interested?

This coming week (and beyond)

Reading

- Nov. 26 (Today): no reading
- Nov. 28 (Friday): Sipser 6.1 and 6.2

Homework

Dec. 1 (Monday): HW 11 due.

Final Exam:

- Dec. 6: 3:30-6:30pm
- CHBE 103