Cryptography

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- Today's NP-Completeness Example: One-in-three 3SAT
- Research Advertisement
- Hybrid Automata
- Circuit Verifcation
- Parallel Computing

One-In-Three 3SAT

- Let f be a 3cnf formula. Does there exist a satisfying assignment where exactly one literal in each clause is satisfied?
- One-in-three 3SAT is NP complete.
- It is easy to see that one-in-three 3SAT is in NP, an assignment of truth values to variables suffices as a certificate.
- Such a list is shorter than the original input, thus its size is polynomial in the length of the input.
- Checking that each clause has exactly one satisfied literal for the given assignment is straightforward and polynomial time.
- To show that one-in-three 3SAT is NP hard, we show that we can reduce 3SAT to one-in-three 3SAT.
- We add variables and rewrite each clause to produce a modified formula that is one-in-three satisifiable iff the original formula had any satisfying assignment.

One-In-Three 3SAT: Details

Verifying the Reduction

Monotone One-In-Three 3SAT

One-in-three 3SAT remains NP complete even if we only consider 3cnf formulas where no literals are negated.

- Construct a clause that forces a particular variable, t to be true, and another variable, f to be false:

$$
(t \vee f \vee f)
$$

If you think it was cheating to use the same variable twice in the same clause, we could use the clauses:

$$
\begin{aligned}
& (f \vee b \vee c)(f \vee d \vee e)(f \vee g \vee h) \\
\wedge \quad & (b \vee d \vee g)(c \vee e \vee h)
\end{aligned}
$$

We could make f_{1} and f_{2} in this fashion, and then use the clause $\left(t \vee f_{1} \vee f_{2}\right)$ to create a variable that must be true.

- Now, anytime we need the inverse of some variable, v, we just add the clause $(v \vee v B \vee f)$. Any assignment that satisfies one-in-three 3SAT will assign opposite values to v and $v B$.

A Partitioning Problem

- Let U be a set. Let $\mathcal{C}=\left\{\mathcal{C}_{\infty}, \mathcal{C}_{\in}, \ldots \mathcal{C}_{\Uparrow}\right\}$ be a collection of subsets of U. Is there a set of disjoint sets, $\left\{S_{1}, S_{2}, \ldots S_{k}\right\}$ with each $S_{i} \in C$ such that the $\bigcup_{i=1}^{k} S_{i}=U$?

Sipser's Minesweeper Problem

- See Sipser problem 7.30.

Hybrid Automata

The Rambus Oscillator Challenge

Post-Silicon Debug

Parallel Computing

Interested?

This coming week (and beyond)

- Reading
- Nov. 26 (Today): no reading
- Nov. 28 (Friday): Sipser 6.1 and 6.2
- Homework
- Dec. 1 (Monday): HW 11 due.
- Final Exam:
- Dec. 6: 3:30-6:30pm
- CHBE 103

