### **The Cook-Levin Theorem**

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- The Cook-Levin Theorem
  - Define *NP* Completeness
  - Satisfiability is *NP* complete
- NP complete problems

### **NP** Completeness

- Let A and B be algorithms. If A is reducible to B in deterministic polynomial time, we write  $A \leq_P B$ .
- If a problem language is decidable in non-deterministic polynomial time, we say that it is in NP.
- If *B* is a language such that for any language  $A \in NP$ ,  $A \leq_P B$  we say that *B* is *NP*-hard.
- If *B* is a language such that  $B \in NP$  and *B* is *NP* hard, then we say that *B* is *NP* complete.
- *NP* complete problems are interesting because:
  - They are, intuitively, the hardest problems in NP.
  - Many commonly occuring intractable problems are NP complete.
  - If we could find an efficient (i.e. polynomial time) algorithm for one of them, we would have a polynomial time algorithm for all of them.

# **Satisfiability**

- A boolean formula is:
  - Variables:  $x, y, p_3, \ldots$  are boolean formulas.
  - Conjunction:  $\phi_1 \wedge \phi_2$ , where  $\phi_1$  and  $\phi_2$  are boolean formulas.
  - Disjunction:  $\phi_1 \lor \phi_2$ , where  $\phi_1$  and  $\phi_2$  are boolean formulas.
  - Negation:  $\neg \phi$ , where  $\phi$  is a boolean formula.
  - Parentheses:  $(\phi)$ , where  $\phi$  is a boolean formula.

#### Satisfiability

- Let  $\phi$  be a boolean formula and let  $x_1, x_2, \ldots, x_k$  be the variables that appear in  $\phi$ .
- We say that  $\Phi$  is satisfiable iff  $\exists x_1, x_2, \ldots, x_k$ .  $\phi$ .
- Formulas can be represented by strings. Thus, we can talk about a language of satisifiable formulas:

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable} \}$$

### **The Cook-Levin Theorem**

SAT is NP complete.

- Proof: By computational histories.
  - Let A be any language in NP.
    - There is an NTM,  $N_A$  that decides A in polynomial time.
    - Let p be a polynomial such that for any string w,  $N_A$  decides w after at most p(|w|) steps.
    - Thus,  $N_A$  has a computational history of at most p(|w|) + 1 configurations when deciding w.
    - $N_A$  can visit at most p(w) + 1 tape squares in these p(|w|) steps.



# **Checking Successive Configurations**



- Encode tape symbols and states with binary strings.
- If a tape square does not have the tape-head marker and is not next to the tape head marker
  - make sure that the symbol is unchanged.
  - This can be written as a boolean formula.
- For the three squares centered on the tape head
  - make sure that the successor has the correct next state.
  - This also can be written as a boolean formula.

# The reduction is polynomial time.

- How big is the formula?
  - Each tape square requires O(1) terms.
  - There are p(|w|) + 1 squares per configuration.
  - There are p(|w|) successive configurations.
  - Plus a few more to check that the intial configuration is correct and that the final configuration is accepting, but these are small (i.e. O(|w|)).

The formula:

$$\begin{array}{l} Initial Configuration Correct \\ p(|w|)-1 \ p(|w|) \\ \wedge \quad \bigwedge_{i=0}^{n} \quad \bigwedge_{j=1}^{n} \\ (c_{i,j-1} \not\in Q) \land (c_{i,j} \not\in Q) \land (c_{i,j+1} \not\in Q) \land (c_{i+1,j} = c_{i,j}) \\ \vee \quad (c_{i,j-1} \in Q) \lor (c_{i,j+1} \in Q) \\ \vee \quad (c_{i,j} \in Q) \land c_{i+1,j-1} c_{i+1,j} c_{i+1,j+1} = \Delta(c_{i,j-1} c_{i,j} c_{i,j+1}) \end{array}$$

•  $c_{i,j}$  denotes the symbol in the  $j^{th}$  square of the  $i^{th}$  configuration.

I've ignored a few special cases at the ends of the tape.

CpSc 421 — 17 November 2008 - p.6/14

# SAT is NP complete

- SAT is in NP:
  - Just guess a satisfying assignment and check it.
- SAT is in NP hard: shown above by the reduction from any problem in NP to SAT.
  - The formula can be generated in time proportional to its length.
  - This is a polynomial time reduction from any problem in NP to SAT.
- $\therefore$  SAT is NP-complete.

### 3SAT

- 3-CNF
  - A "literal" is a variable, v, or its negation,  $\overline{v}$ .
  - A "clause" is a disjunction ("or") of variables e.g.  $v_3 \vee \overline{v_5} \vee \overline{v_8} \vee v_{13}$ .
  - A formula is in conjunctive normal form (CNF) if it is the can be written as a conjunction ("and") of clauses, e.g.
    (v<sub>3</sub> ∨ v<sub>5</sub> ∨ v<sub>8</sub> ∨ v<sub>13</sub>) ∧ (v<sub>1</sub> ∨ v<sub>2</sub> ∨ v<sub>3</sub>) ∧ (v<sub>13</sub> ∨ v<sub>27</sub>)
  - A formula is in 3-CNF if it is a CNF formula where each clause consists of three variables.
- 3SAT is a restricted version of SAT where the formula is in 3-CNF.
- By restricting the class of formulas, it can be easier to show a reduction from 3-CNF to some other problem, X, than it is to reduce arbitrary boolean formulas.

## *3SAT* is *NP*-complete

- I'll show that any boolean formula can be transformed into an equivalent 3-CNF formula.
  - We can push all negations down to the literals (just use DeMorgan's laws). This at most doubles the length of the formula.
  - If our top-level formula is of the form  $\Phi_1 \lor \Phi_2$  where neither  $\Phi_1$  nor  $Phi_2$  are literals:
    - We rewrite it as  $(\Phi_1 \lor x)(\Phi_2 \lor \overline{x})$
    - x is a "new" variable (doesn't appear in  $\Phi_1$  or  $\Phi_2$ ).
    - x "selects" which of  $\Phi_1$  or  $\Phi_2$  must be true.
    - For example,  $(a \land b) \lor (c \land d)$  is satisfiable iff  $(a \land b \lor x) \lor (c \land d \lor \overline{x})$  is satisfiable.
- This shows that  $SAT \leq_P 3SAT$ .
  - We know that SAT is NP complete.
  - Therefore, 3SAT is NP hard.
- Obviously,  $3SAT \leq_P SAT$ .
  - Therefore, 3SAT is in NP.
- $\therefore 3SAT \leq_P SAT$ .



#### CLIQUE is NP-complete

## **Karp's 21** NP-complete problems

See:

http://en.wikipedia.org/wiki/Karp's\_21\_NP-complete\_problems.

# Not all hard problems are NP-complete

- Some algorithms that are polynomial time, but can look hard:
  - Dynamic programming
  - Linear programming
  - Bipartite matching
- Harder than *P* but easier than *NP*?
  - If P ≠ NP, then there must be an infinite number of problems in between the two. Here are candidates for "gap" problems:
  - Factoring
  - Graph isomorphism
- Harder than NP
  - There are problems that are known to require exponential time or more.
  - Note that even these are "easier" than undecidable problems, but they are harder than NP complete.

## This coming week (and beyond)

#### Reading

- Nov. 17 (Today): Sipser 7.4
- Nov. 19 (Wednesday): class cancelled
- Nov. 21 (Friday): Sipser 7.5
- Nov. 24 (A week from today): Sipser 10.6

#### Homework

- Nov. 14 (Friday): HW 10 goes out.
- Nov. 17 (Monday): HW 9 due.