
The Cook-Levin Theorem
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v The Cook-Levin Theorem
u Define NP Completeness

u Satisfiability is NP complete

vNP complete problems

CpSc 421 — 17 November 2008 – p.1/14

NP Completeness
v Let A and B be algorithms. If A is reducible to B in deterministic

polynomial time, we write A ≤P B.

v If a problem language is decidable in non-deterministic polynomial
time, we say that it is in NP .

v If B is a language such that for any language A ∈ NP , A ≤P B we
say that B is NP -hard.

v If B is a language such that B ∈ NP and B is NP hard, then we
say that B is NP complete.

v NP complete problems are interesting because:
u They are, intuitively, the hardest problems in NP .
u Many commonly occuring intractable problems are NP complete.

u If we could find an efficient (i.e. polynomial time) algorithm for one of them, we

would have a polynomial time algorithm for all of them.

CpSc 421 — 17 November 2008 – p.2/14

Satisfiability
v A boolean formula is:

u Variables: x, y, p3, . . . are boolean formulas.
u Conjunction: φ1 ∧ φ2, where φ1 and φ2 are boolean formulas.
u Disjunction: φ1 ∨ φ2, where φ1 and φ2 are boolean formulas.
u Negation: ¬φ, where φ is a boolean formula.

u Parentheses: (φ), where φ is a boolean formula.

v Satisfiability
u Let φ be a boolean formula and let x1, x2, . . . , xk be the variables that appear

in φ.
u We say that Φ is satisfiable iff ∃x1, x2, . . . , xk. φ.
u Formulas can be represented by strings. Thus, we can talk about a language of

satisifiable formulas:

SAT = {〈φ〉 | φ is satisfiable}

CpSc 421 — 17 November 2008 – p.3/14

The Cook-Levin Theorem
SAT is NP complete.

v Proof: By computational histories.
u Let A be any language in NP .

t There is an NTM, NA that decides A in polynomial time.
t Let p be a polynomial such that for any string w, NA decides w after at most

p(|w|) steps.
t Thus, NA has a computational history of at most p(|w|) + 1 configurations

when deciding w.
t NA can visit at most p(w) + 1 tape squares in these p(|w|) steps.

p(w) + 1

Cp(w)

C

C
0

1

p(w) + 1
tape squares

configurations

CpSc 421 — 17 November 2008 – p.4/14

Checking Successive Configurations

p(w) + 1

Cp(w)

C

C
0

1

p(w) + 1
tape squares

configurations

v Encode tape symbols and states with binary strings.

v If a tape square does not have the tape-head marker and is not
next to the tape head marker

u make sure that the symbol is unchanged.

u This can be written as a boolean formula.

v For the three squares centered on the tape head
u make sure that the successor has the correct next state.

u This also can be written as a boolean formula.

CpSc 421 — 17 November 2008 – p.5/14

The reduction is polynomial time.
v How big is the formula?

u Each tape square requires O(1) terms.
u There are p(|w|) + 1 squares per configuration.
u There are p(|w|) successive configurations.
u Plus a few more to check that the intial configuration is correct and that the final

configuration is accepting, but these are small (i.e. O(|w|)).

v The formula:

InitialConfigurationCorrect

∧

p(|w|)−1
^

i=0

p(|w|)
^

j=1

(ci,j−1 6∈ Q) ∧ (ci,j 6∈ Q) ∧ (ci,j+1 6∈ Q) ∧ (ci+1,j = ci,j)

∨ (ci,j−1 ∈ Q) ∨ (ci,j+1 ∈ Q)

∨ (ci,j ∈ Q) ∧ ci+1,j−1ci+1,jci+1,j+1 = ∆(ci,j−1ci,jci,j+1)

u ci,j denotes the symbol in the jth square of the ith configuration.
u I’ve ignored a few special cases at the ends of the tape.

CpSc 421 — 17 November 2008 – p.6/14

SAT is NP complete
v SAT is in NP :

u Just guess a satisfying assignment and check it.

v SAT is in NP hard: shown above by the reduction from any
problem in NP to SAT .

u The formula can be generated in time proportional to its length.

u This is a polynomial time reduction from any problem in NP to SAT .

v
∴ SAT is NP -complete.

CpSc 421 — 17 November 2008 – p.7/14

3SAT
v 3-CNF

u A “literal” is a variable, v, or its negation, v.
u A “clause” is a disjunction (“or”) of variables e.g. v3 ∨ v5 ∨ v8 ∨ v13.
u A formula is in conjunctive normal form (CNF) if it is the can be written as a

conjunction (“and”) of clauses, e.g.
(v3 ∨ v5 ∨ v8 ∨ v13) ∧ (v1 ∨ v2 ∨ v3) ∧ (v13 ∨ v27)

u A formula is in 3-CNF if it is a CNF formula where each clause consists of three

variables.

v 3SAT is a restricted version of SAT where the formula is in 3-CNF.

v By restricting the class of formulas, it can be easier to show a
reduction from 3-CNF to some other problem, X , than it is to
reduce arbitrary boolean formulas.

CpSc 421 — 17 November 2008 – p.8/14

3SAT is NP -complete
v I’ll show that any boolean formula can be transformed into an

equivalent 3-CNF formula.
u We can push all negations down to the literals (just use DeMorgan’s laws). This

at most doubles the length of the formula.
u If our top-level formula is of the form Φ1 ∨ Φ2 where neither Φ1 nor Phi2 are

literals:
t We rewrite it as (Φ1 ∨ x)(Φ2 ∨ x)
t x is a “new” variable (doesn’t appear in Φ1 or Φ2).
t x “selects” which of Φ1 or Φ2 must be true.
t For example, (a ∧ b) ∨ (c ∧ d) is satisfiable iff (a ∧ b ∨ x) ∨ (c ∧ d ∨ x) is

satisfiable.

v This shows that SAT ≤P 3SAT .
u We know that SAT is NP complete.

u Therefore, 3SAT is NP hard.

v Obviously, 3SAT ≤P SAT .
u Therefore, 3SAT is in NP .

v
∴ 3SAT ≤P SAT . CpSc 421 — 17 November 2008 – p.9/14

CLIQUE

CpSc 421 — 17 November 2008 – p.10/14

CLIQUE is NP -complete

CpSc 421 — 17 November 2008 – p.11/14

Karp’s 21 NP -complete problems
v See:

http://en.wikipedia.org/wiki/Karp’s_21_NP-complete_problems.

CpSc 421 — 17 November 2008 – p.12/14

Not all hard problems are NP -complete
v Some algorithms that are polynomial time, but can look hard:

u Dynamic programming
u Linear programming

u Bipartite matching

v Harder than P but easier than NP?
u If P 6= NP , then there must be an infinite number of problems in between the

two. Here are candidates for “gap” problems:
u Factoring

u Graph isomorphism

v Harder than NP

u There are problems that are known to require exponential time or more.

u Note that even these are “easier” than undecidable problems, but they are

harder than NP complete.

CpSc 421 — 17 November 2008 – p.13/14

This coming week (and beyond)
v Reading

u Nov. 17 (Today): Sipser 7.4
u Nov. 19 (Wednesday): class cancelled
u Nov. 21 (Friday): Sipser 7.5

u Nov. 24 (A week from today): Sipser 10.6

v Homework
u Nov. 14 (Friday): HW 10 goes out.

u Nov. 17 (Monday): HW 9 due.

CpSc 421 — 17 November 2008 – p.14/14

	$NP $ Completeness
	Satisfiability
	The Cook-Levin Theorem
	Checking Successive Configurations
	The reduction is polynomial time.
	$mathit {SAT}$ is $NP $ complete
	$mathit {3SAT}$
	$mathit {3SAT}$ is $NP $-complete
	$mathit {CLIQUE}$
	$mathit {CLIQUE}$ is $NP $-complete
	Karp's 21 $NP $-complete problems
	Not all hard problems are $NP $-complete
	This coming week (and beyond)

