The Cook-Levin Theorem

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- The Cook-Levin Theorem
- Define NP Completeness
- Satisfiability is $N P$ complete
- $N P$ complete problems

NP Completeness

- Let A and B be algorithms. If A is reducible to B in deterministic polynomial time, we write $A \leq_{P} B$.
- If a problem language is decidable in non-deterministic polynomial time, we say that it is in NP.
- If B is a language such that for any language $A \in N P, A \leq_{P} B$ we say that B is $N P$-hard.
- If B is a language such that $B \in N P$ and B is $N P$ hard, then we say that B is $N P$ complete.
- $N P$ complete problems are interesting because:
- They are, intuitively, the hardest problems in $N P$.
- Many commonly occuring intractable problems are NP complete.
- If we could find an efficient (i.e. polynomial time) algorithm for one of them, we would have a polynomial time algorithm for all of them.

Satisfiability

- A boolean formula is:
- Variables: x, y, p_{3}, \ldots are boolean formulas.
- Conjunction: $\phi_{1} \wedge \phi_{2}$, where ϕ_{1} and ϕ_{2} are boolean formulas.
- Disjunction: $\phi_{1} \vee \phi_{2}$, where ϕ_{1} and ϕ_{2} are boolean formulas.
- Negation: $\neg \phi$, where ϕ is a boolean formula.
- Parentheses: (ϕ), where ϕ is a boolean formula.
- Satisfiability
- Let ϕ be a boolean formula and let $x_{1}, x_{2}, \ldots, x_{k}$ be the variables that appear in ϕ.
- We say that Φ is satisfiable iff $\exists x_{1}, x_{2}, \ldots, x_{k} . \phi$.
- Formulas can be represented by strings. Thus, we can talk about a language of satisifiable formulas:

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is satisfiable }\}
$$

The Cook-Levin Theorem

SAT is NP complete.

- Proof: By computational histories.
- Let A be any language in $N P$.
- There is an NTM, N_{A} that decides A in polynomial time.
- Let p be a polynomial such that for any string w, N_{A} decides w after at most $p(|w|)$ steps.
- Thus, N_{A} has a computational history of at most $p(|w|)+1$ configurations when deciding w.
- N_{A} can visit at most $p(w)+1$ tape squares in these $p(|w|)$ steps.

$$
p(w)+1
$$

tape squares

$p(w)+1$
configurations

Checking Successive Configurations

$$
p(w)+1
$$

tape squares

$p(w)+1$
configurations

- Encode tape symbols and states with binary strings.
- If a tape square does not have the tape-head marker and is not next to the tape head marker
- make sure that the symbol is unchanged.
- This can be written as a boolean formula.
- For the three squares centered on the tape head
- make sure that the successor has the correct next state.
- This also can be written as a boolean formula.

The reduction is polynomial time.

- How big is the formula?
- Each tape square requires $O(1)$ terms.
- There are $p(|w|)+1$ squares per configuration.
- There are $p(|w|)$ successive configurations.
- Plus a few more to check that the intial configuration is correct and that the final configuration is accepting, but these are small (i.e. $O(|w|)$).
- The formula:

- $c_{i, j}$ denotes the symbol in the $j^{t h}$ square of the $i^{t h}$ configuration.
- l've ignored a few special cases at the ends of the tape.

$S A T$ is $N P$ complete

- SAT is in NP:
- Just guess a satisfying assignment and check it.
- SAT is in NP hard: shown above by the reduction from any problem in $N P$ to $S A T$.
- The formula can be generated in time proportional to its length.
- This is a polynomial time reduction from any problem in $N P$ to $S A T$.
$\therefore S A T$ is $N P$-complete.

3SAT

- 3-CNF
- A "literal" is a variable, v, or its negation, \bar{v}.
- A "clause" is a disjunction ("or") of variables e.g. $v_{3} \vee \overline{v_{5}} \vee \overline{v_{8}} \vee v_{13}$.
- A formula is in conjunctive normal form (CNF) if it is the can be written as a conjunction ("and") of clauses, e.g.
$\left(v_{3} \vee \overline{v_{5}} \vee \overline{v_{8}} \vee v_{13}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\overline{v_{13}} \vee v_{27}\right)$
- A formula is in 3-CNF if it is a CNF formula where each clause consists of three variables.
- $3 S A T$ is a restricted version of $S A T$ where the formula is in $3-\mathrm{CNF}$.
- By restricting the class of formulas, it can be easier to show a reduction from 3-CNF to some other problem, X, than it is to reduce arbitrary boolean formulas.

$3 S A T$ is $N P$-complete

- I'll show that any boolean formula can be transformed into an equivalent 3-CNF formula.
- We can push all negations down to the literals (just use DeMorgan's laws). This at most doubles the length of the formula.
- If our top-level formula is of the form $\Phi_{1} \vee \Phi_{2}$ where neither Φ_{1} nor $P h i_{2}$ are literals:
- We rewrite it as $\left(\Phi_{1} \vee x\right)\left(\Phi_{2} \vee \bar{x}\right)$
- x is a "new" variable (doesn't appear in Φ_{1} or Φ_{2}).
- x "selects" which of Φ_{1} or Φ_{2} must be true.
- For example, $(a \wedge b) \vee(c \wedge d)$ is satisfiable iff $(a \wedge b \vee x) \vee(c \wedge d \vee \bar{x})$ is satisfiable.
- This shows that $S A T \leq_{P} 3 S A T$.
- We know that $S A T$ is $N P$ complete.
- Therefore, $3 S A T$ is $N P$ hard.
- Obviously, $3 S A T \leq_{P} S A T$.
- Therefore, $3 S A T$ is in $N P$.

CLIQUE

CLIQUE is NP-complete

Karp's $21 N P$-complete problems

- See:
http://en.wikipedia.org/wiki/Karp's_21_NP-complete_problems.

Not all hard problems are $N P$-complet

- Some algorithms that are polynomial time, but can look hard:
- Dynamic programming
- Linear programming
- Bipartite matching
- Harder than P but easier than $N P$?
- If $P \neq N P$, then there must be an infinite number of problems in between the two. Here are candidates for "gap" problems:
- Factoring
- Graph isomorphism
- Harder than $N P$
- There are problems that are known to require exponential time or more.
- Note that even these are "easier" than undecidable problems, but they are harder than NP complete.

This coming week (and beyond)

- Reading
- Nov. 17 (Today): Sipser 7.4
- Nov. 19 (Wednesday): class cancelled
- Nov. 21 (Friday): Sipser 7.5
- Nov. 24 (A week from today): Sipser 10.6
- Homework
- Nov. 14 (Friday): HW 10 goes out.
- Nov. 17 (Monday): HW 9 due.

