The Cook-Levin Theorem

Mark Greenstreet, CpSc 421, Term 1, 2008/09

® The Cook-Levin Theorem
® Define NP Completeness

@ Satisfiability is NP complete

® NP complete problems
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NP Completeness

® Let A and B be algorithms. If A is reducible to B in deterministic
polynomial time, we write A <p B.

® If a problem language is decidable in non-deterministic polynomial
time, we say that it is in NP.

® If B is a language such that for any language A € NP, A <p B we
say that B is NP-hard.

® |If B is alanguage such that B € NP and B is NP hard, then we
say that B is NP complete.

® NP complete problems are interesting because:
® They are, intuitively, the hardest problems in NP.
@® Many commonly occuring intractable problems are NP complete.

® If we could find an efficient (i.e. polynomial time) algorithm for one of them, we
would have a polynomial time algorithm for all of them.
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Satisfiability

® A boolean formula is:

Variables: x, y, ps, ...are boolean formulas.
Conjunction: ¢1 A ¢2, where ¢1 and ¢- are boolean formulas.
Disjunction: ¢1 V ¢2, Where ¢1 and ¢2 are boolean formulas.
Negation: —¢, where ¢ is a boolean formula.

Parentheses: (¢), where ¢ is a boolean formula.

® Satisfiability

Let ¢ be a boolean formula and let x1, x2, ..., ;. be the variables that appear
in .
We say that ® is satisfiable iff 3z, z2, ..., xk. ¢.

Formulas can be represented by strings. Thus, we can talk about a language of
satisifiable formulas:

SAT = {{(¢) | ¢is satisfiable }
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The Cook-Levin Theorem
SAT Is NP complete.

® Proof: By computational histories.

® Let A be any language in NP.
® Thereis an NTM, N4 that decides A in polynomial time.
® Let p be a polynomial such that for any string w, N 4 decides w after at most
p(Jw|) steps.
® Thus, N4 has a computational history of at most p(|w|) + 1 configurations
when deciding w.
® NN, can visit at most p(w) + 1 tape squares in these p(|w|) steps.
p(w) +1
tape squares

Cq p(w) + 1
: configurations
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Checking Successive Configurations

p(w) +1
tape squares

Cq p(w) + 1
: configurations

Cp(w)

® Encode tape symbols and states with binary strings.

® |f a tape square does not have the tape-head marker and is not
next to the tape head marker
® make sure that the symbol is unchanged.

@® This can be written as a boolean formula.

® For the three squares centered on the tape head
® make sure that the successor has the correct next state.

@® This also can be written as a boolean formula.
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The reduction iIs polynomial time.

@® How big is the formula?

® Each tape square requires O(1) terms.
There are p(|w|) + 1 squares per configuration.
There are p(|w|) successive configurations.

Plus a few more to check that the intial configuration is correct and that the final
configuration is accepting, but these are small (i.e. O(|w])).

@® The formula:

InitralConfigurationCorrect
p(lw[)—1 p(|wl|)

A A

(Ci,j—1 € Q)N (ci; € Q)N (cij+1 € Q)N (Cit1,5 =¢Ci,j)
Vo (cij—1 €Q)V(cijt1 €Q)
Vo (Cij € Q) N Cit1,j-1Ci+1,5Ci+1,j4+1 = A(Ci,j—1Ci,jCij+1)

® c; ; denotes the symbol in the jt" square of the it configuration.

® /I'veignored a few special cases at the ends of the tape.
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SAT 1s NP complete

® SAT isin NP:

@® Just guess a satisfying assignment and check it.

® SAT isin NP hard: shown above by the reduction from any
problem in NP to SAT.

® The formula can be generated in time proportional to its length.

® Thisis a polynomial time reduction from any problem in NP to SAT.

® - SAT is NP-complete.
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35AT

® 3-CNF

® A ‘literal” is a variable, v, or its negation, v.

® A “clause” is a disjunction (“or”) of variables e.g. v3 Vvs V vg V v13.

® A formulais in conjunctive normal form (CNF) if it is the can be written as a
conjunction (“and”) of clauses, e.g.
(’03 \/%\/%\/’013) A\ (’Ul V vo \/’03) AN (m\/?)27)

® A formulaisin 3-CNF if it is a CNF formula where each clause consists of three
variables.

® 55AT is arestricted version of SAT where the formula is in 3-CNF.

® By restricting the class of formulas, it can be easier to show a
reduction from 3-CNF to some other problem, X, thanitis to
reduce arbitrary boolean formulas.
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3SAT I1s NP-complete

® I'll show that any boolean formula can be transformed into an
equivalent 3-CNF formula.

® We can push all negations down to the literals (just use DeMorgan’s laws). This
at most doubles the length of the formula.

® |If our top-level formula is of the form & v ®5 where neither ®; nor Phiy are
literals:

® We rewriteitas (1 V x)(P2 V)
® zx is a“new” variable (doesn’t appear in ®; or ®»).
® 1 “selects” which of ®; or &5 must be true.

® For example, (a Ab) V (c A d) is satisfiable iff (a AbV x)V (cANdVT) IS
satisfiable.

® This shows that SAT <p 35AT.
® We know that SAT is NP complete.

® Therefore, 3SAT is NP hard.

® Obviously, 3SAT <p SAT.
® Therefore, 3SAT isin NP.
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CLIQUE
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CLIQUE Is NP-complete
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Karp’s 21 NP-complete problems

® Sce:
http://en.wikipedia.org/wiki/Karp’s_21 NP-complete problems.
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Not all hard problems are NP-complet

® Some algorithms that are polynomial time, but can look hard:

® Dynamic programming

® Linear programming
® Bipartite matching

® Harder than P but easier than NP?

® If P # NP, then there must be an infinite number of problems in between the
two. Here are candidates for “gap” problems:

® Factoring
® Graph isomorphism
® Harder than NP
® There are problems that are known to require exponential time or more.

@® Note that even these are “easier” than undecidable problems, but they are

harder than NP complete.
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This coming week (and beyond)

® Reading
® Nov. 17 (Today): Sipser 7.4
® Nov. 19 (Wednesday): class cancelled
® Nov. 21 (Friday): Sipser 7.5

® Nov. 24 (A week from today): Sipser 10.6

® Homework
® Nov. 14 (Friday): HW 10 goes out.

® Nov. 17 (Monday): HW 9 due.
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