
Introduction to Time Complexity
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v Time complexity
u Reviewing Big-O
u Defining Time Complexity

u Complexity vs. models of computation

vP and NP

u P : Polynomial time on a deterministic TM

u NP : Polynomial time on a non-deterministic TM

CpSc 421 — 14 November 2008 – p.1/14



Big-O Review
v Definition:

u Let f : N → R and g : N → R be functions.
u We say that f(n) = O(g(n)) iff there exists constants n0 and c such that for all

n ≥ n0, f(n) ≤ cg(n).

u Intuitively, f(n) = O(g(n)) says that f grows no faster than g.

v True or false:
u 1. n + 2 = O(n2)?
u 2. 1000n + 200 = O(n)?

u 3.
n∑

i=1

n = O(n log n)?

u 4. log(n!) = O(n log n)?
u 5. n2 = O(2n)?

CpSc 421 — 14 November 2008 – p.2/14



Big-O short cuts
v Big-O and sums and products:

O(f(n) + g(n)) = O(max(f(n), g(n))) = O(f(n)) + O(g(n))

O(f(n)g(n)) = O(f(n)) + O(g(n))

v Transitivity: If f(n) = O(g(n)) and g(n) = O(h(n)), then
f(n) = O(h(n)).

v A few more rules:
u If f(n) = O(g(n)), then O(f(n) + g(n)) = O(f(n)).
u If f(n) = 2O(g(n)), that means there is some constant c such that 2cg(n) is an

upper bound for f (for n sufficiently large.

u If f(n) = 2O(log n) = nO(1), that means there is some constant c such that nc

is an upper bound for f . In other words, f is polynomial in n.

v Little-o:
u If limn→∞

f(n)

g(n)
= 0, then we say that f(n) = o(g(n)).

u Sipser discusses little-o. Read. CpSc 421 — 14 November 2008 – p.3/14



Time Complexity
v A language, A has time-complexity g(n) iff there is some TM that

decides A and performs O(g(n)) steps to decide an input of length
n.

v We write TIME (g(n)) to denote the class of all languages with a
time complexity of O(g(n)).

v We can extend this to arbitrary functions. Function f has time
complexity O(g(n)) if there is a TM that given an input of length n

computes f(n) and writes it on its tape using O(g(n)) steps.

v Big-O ignores constant factors. Therefore:

O(log2(n)) = O(log10(n)) = O(ln(n))

CpSc 421 — 14 November 2008 – p.4/14



Computation Models
v Whether or not a function is computable or a language is decidable

is the same for TMs, multi-tape TMs, non-deterministic TMs,
traditional computers, etc.

v The time complexity of a computation depends on the model.

v For example, if a language has a time complexity of O(t(n)) on a
multi-tape TM, then it has a complexity of O(t2(n)) on a single-tape
TM.

u If a k-tape TM decides a language in O(t(n)) time, it writes at most
O(kt(n)) = O(t(n)) symbols on its tape.

u A single-tape TM can simulate the k-tape machine using a tape of length
n + O(t(n)) = O(t(n)). Here, I’m assuming that t(n) ≥ n, i.e. the TM reads all
of its input.

u The single-tape TM can simulate the k-tape machine by making two-passes
over its tape for each step of the k-tape machine. Thus, the single-tape TM
takes at most time O(t(n)) to simulate a step of the k-tape machine.

u Thus, the total time for the single-tape machine to simulate a k-tape machine,
when the later takes O(t(n)) steps is O(t(n)) · O(t(n)) = O(t2(n)).

u �
CpSc 421 — 14 November 2008 – p.5/14



Random Access Machines (RAMs)
v Most algorithm analysis is based on a machine that can perform one “operation” at

each time step where an “operation” can be:
u An arithmetic operation: add, subtract, mutiply, divide, etc.
u A comparison
u A branch
u A memory access

Typically, we assume that there is some fixed-sized “word” for these operations,
where a “word” is large enough to hold the individual data values that occur in the
problem.

v In principle, a TM can perform arithmetic and comparisons on fixed sized words in a
single step.

v Branches and memory operations require going to arbitary memory locations.
u If a RAM computes a function in O(t(n)) time, then it access at most O(t(n))

different memory locations.
u By an argument like that on the previous slide, then a single-tape TM can

perform the same computation in O(t2(n)) time.
u Conversely, if a single tape TM requires at least T (n) time, then a RAM

requires at least
p

T (n) time. CpSc 421 — 14 November 2008 – p.6/14



Polynomial Time
v A language, A, is decidable in polynomial time iff there is a TM that

decides it in O(p(n)) steps, where p is a polynomial.

v We write P to denote the set of all languages that can be decided
in polynomial time.

v Examples:
u Is there a path from vertex s to vertex t in graph G?
u Are integers n and d relatively prime?
u Is string w generated by CFG G?
u Are there two people in this class with the same birthday?

u Is m a factor of n?

CpSc 421 — 14 November 2008 – p.7/14



Handy Properties of Polynomials
v Properties – let f(n) and g(n) be polynomials.

u Let s(n) = f(n) + g(n). Then s(n) is a polynomial.
u Let p(n) = f(n) ∗ g(n). Then p(n) is a polynomial.
u Let h(n) = f(g(n)). Then h(n) is a polynomial.

u Let x(n) = c for some constant c. Then x(n) is a polynomial.

v Uses
u If an algorithm performs a fixed set of steps, and each step takes polynomial

time, then the algorithm takes polynomial time.
u If an algorithm performs a polynomial number of steps, and each step take

polynomial time, then the algorithm takes polynomial time.
u If an algorithm includes a loop that is performed a polynomial number of times,

and each itereation takes polynomial time, then the algorithm talks polynomial
time.

u If algorithm X when run on input s produces data structure w in polynomial

time, and then runs algorithm Y on w where Y takes polynomial time (in the

length of w), then X takes polynomial time (in the length of s).

CpSc 421 — 14 November 2008 – p.8/14



P , TMs and RAMs
v As shown above, if there is a RAM that computes function f in

O(t(n)) time, then there is a TM that computes the same function in
at most O(t2(n)) time.

v Furthermore, a RAM can simulate a TM such that if there is a TM
that computes f in O(u(n)) time, then there is a RAM that
computes the same function in at most O(u(n)) time as well.

v Thus, the class of polynomial-time functions (including polynomial
time languages) is the same for RAMs and TMs.

v In fact, P is the same for any “reasonable” model of computation.

CpSc 421 — 14 November 2008 – p.9/14



Non-Deterministic Polynomial Time
v A language, A, is decidable in polynomial time iff there is a

non-deterministic TM that decides it in O(p(n)) steps, where p is a
polynomial.

v We write NP to denote the set of all languages that can be decided
in non-deterministic polynomial time.

CpSc 421 — 14 November 2008 – p.10/14



An NP example
SubsetSum

v Given a set S of integers, and an integer m, is there a set B ⊆ S such that the sum
of the elements of B is equal to m?

v We can describe S and m with strings. Thus, SubsetSum is a language.

v A polynomial time algorithm on a non-deterministic TM:

Q = ∅; /* Elements we’ve selected from S */
q = 0; /* Sum of elements of Q */
T = S; /* T = S − Q: elements left to choose. */
while(q < m) {

p = choose(T ); /* non-deterministically select an element from T */
Q = q ∪ {p}; q = q + p; /* update Q and q */
T = T − {p}; /* update T */

}
return(q == m);

v Thus, SubsetSum ∈ NP .

v Is SubsetSum ∈ P?
CpSc 421 — 14 November 2008 – p.11/14



Certificates
v We could also write a non-deterministic program that picks a subset of Q first and

then (deterministically) verifies it:

Choose Q ⊆ S; /* Non-deterministic choice */
/* Now, verify Q */
k = 0;
for each q in Q {

k = k + p;
}
return(k == m);

v We call Q a certificate for the subset sum problem.
u Intuitively, a certificate specifies the choices made by a non-deterministic TM

for an accepting run (if the input is in the SubsetSum language.
u Because the non-deterministic TM ran in a polynomial number of steps, the

certificate has a polynomial length.

CpSc 421 — 14 November 2008 – p.12/14



Certificates and ClassNP
v A language, A is in class NP iff there exists another languager

A′ ∈ P , and a polynomial, f such that

A = {s | ∃c. (|c| ≤ f(|s|)) ∧ (s#c ∈ A′)}

u c is the certificate for s.
u The requirement that |c| ≤ f(|s|) says that the certificate must have a length

that is at most a polynonial in the input size.
u For example, our certificate for subset sum was the subset of the input set

whose elements sum to the target value. Clearly, this certificate is smaller than
the input and satisfies this requirement.

u A non-deterministic TM (NTM) that runs in polynomial time for all inputs
(whether or not the input is in A) can write c on its tape in polynomial time and
then run a deterministic TM that decides A′.
t If sinA, then the NTM writes a c that proves this and the decider for A′

accepts.
t Otherwise, the NTM can write anything, and the decider for A′ rejects.

v This definition of NP is equivalent to the one given on slide 10.
CpSc 421 — 14 November 2008 – p.13/14



This coming week (and beyond)
v Reading

u Today: Sipser 5.3
u Nov. 14 (Friday): Sipser 7.1
u Nov. 17 (Monday): Sipser 7.2

u Nov. 19 (A week from today): Tutorial by Brad Bingham

v Homework
u Nov. 14 (Friday): HW 10 goes out.

u Nov. 17 (Monday): HW 9 due.

CpSc 421 — 14 November 2008 – p.14/14


	Big-$O$ Review
	Big-$O$ short cuts
	Time Complexity
	Computation Models
	Random Access Machines (RAMs)
	Polynomial Time
	Handy Properties of Polynomials
	$P$, TMs and RAMs
	Non-Deterministic Polynomial Time
	An $mathit {NP}$ example
	Certificates
	Certificates and Class $mathit {NP}$
	This coming week (and beyond)

