The Post Correspondence Problem

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- The Post Correspondence Problem (PCP)
- Definition
- Examples
- Demonstrating undecidability of PCP
- Reductions summary

The Post Correspondence Problem

- Given a set, P of pairs of strings:

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \ldots\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

where each $t_{i}, b_{i} \in \Sigma^{*}$,

- Question: Does there exist a sequence $i_{1}, i_{2}, \ldots i_{n}$ such that:

$$
t_{i_{1}} t_{i_{2}} \cdots t_{i_{n}}=b_{i_{1}} b_{i_{2}} \cdots b_{i_{n}} \quad ?
$$

Note: the same pair can occur multiple times, i.e. there can be $j \neq m$ s.t. $i_{j}=i_{m}$.

A PCP Example

(I've numbered the tiles to make it easier to talk about them.)

- Does the PCP problem P have a solution?

Another PCP Example

- Does the PCP problem P have a solution?

Another PCP Example

- Does the PCP problem P have a solution?
- P has a solution iff $\exists n$. $\left(2^{n} \bmod 5\right)=3$.
- Yes (let $n=3$).

PCP is undecidable

- Proof by computational histories.
- Sketch:
- Start with a pair that has the initial configuration for a TM on the bottom and an empty string on top.
- Include pairs in P whose top strings match the current configuration, and whose bottom strings build the next configuration.
- A bunch of details to:
- Account for moving the tape head.
- Extend the tape with blanks when needed.
- Force the first pair of a solution to be the one that gives the initial configuration.
- A Simplifying Assumption:
- We'll assume that any solution must start with tile 1 we'll call this the "Modified Post Correspondence Problem" (MPCP).
- (Don't worry.) We'll remove this assumption later.

Tile 1

- We'll reduce $A_{T M}$ to MPCP.
- Let $M \# w$ be a string where M describes a TM and w describes an input string to M.
- The first tile will give the initial TM configuration as the bottom string, and an empty string on top. We'll use \# (with $\# \notin \Gamma$) as the end marker for configurations.

$$
\begin{array}{|c|}
\hline \# q_{0} w \# \\
\hline
\end{array} \in P
$$

From one configuration to the next

- At each step, we copy the current configuration from the bottom string to the upper string, and build the next configuration on the lower string:

$$
\begin{array}{|l|}
\hline \# C_{0} \# C_{1} \# \ldots C_{k-1} \# \\
\hline \# C_{0} \# C_{1} \# \ldots C_{k-1} \# C_{k} \\
\hline
\end{array} \rightarrow \begin{array}{|l|}
\hline \# C_{0} \# C_{1} \# \ldots C_{k-1} \# C_{k} \# \\
\hline \# C_{0} \# C_{1} \# \ldots C_{k-1} \# C_{k} \# C_{k+1} \\
\hline
\end{array}
$$

- A configuration looks like $\alpha b q c \beta$.
- To calculate the next configuration, we
- Copy α to the upper and lower strings.
- Copy $\alpha b q c$ to the upper string and write its successor to the lower string.
- Copy β to the upper and lower strings.
- To copy α and β we include the following tile in P for each $c \in \Gamma$:

The next two slides describe how to handle transitions.

All the Right Moves

For each transition $\delta(q, c)=\left(q^{\prime}, c^{\prime}, R\right)$:

- We add the tile | $q c$ |
| :---: |
| $c^{\prime} q^{\prime}$ |
| to P. This enables the move: |

$$
\begin{array}{|l|}
\hline \# \ldots \# \alpha \\
\hline \# \ldots \# \alpha q c \beta \# \alpha \\
\hline
\end{array} \rightarrow \begin{array}{|l|}
\hline \# \# \alpha q c \\
\# \ldots \# \alpha c \beta \# \alpha c^{\prime} q^{\prime} \\
\hline
\end{array}
$$

- If $c=\square$, we also add the tile $\frac{q \#}{c^{\prime} q^{\prime} \#}$ to handle the case when the head is moving further into the infinite string of blanks at the end of the tape.

All the Left Moves

For each transition $\delta(q, c)=\left(q^{\prime}, c^{\prime}, L\right)$:

- for each $b \in \Gamma$ we add the tile | $b q c$ |
| :---: |
| $q^{\prime} b c^{\prime}$ | to P. This enables the move:

$$
\begin{array}{|l|}
\hline \# \ldots \# \alpha \\
\hline \# \ldots \# \alpha b q c \beta \# \alpha \\
\hline
\end{array} \rightarrow \begin{array}{|l|}
\# \ldots \# \alpha b q c \\
\hline \ldots \# \alpha b q c \beta \# \alpha q^{\prime} b c^{\prime} \\
\hline
\end{array}
$$

- We also add the tile | $\frac{\# q c}{\# q^{\prime} c^{\prime}}$ |
| :---: |
| to P to handle the case when the head | is at the left end of the tape.

The End Game

- M accepts w iff we can reach a configuration for our MPCP

$$
\begin{array}{|l|}
\hline \# C_{0} \ldots \# C_{n-1} \# \\
\hline \# C_{0} \ldots \# C_{n-1} \# \alpha q_{\text {accept }} \beta \# \\
\hline
\end{array}
$$

- Now we have to "fix" the problem that we've got one more configuration on the lower tape than the upper one. For each $c \in \Gamma$ we add the tiles:

cq $q_{\text {accept }}$
$q_{\text {accept }}$
:---:
$q_{\text {accept }}$

- These allow us to discard one tape symbol each time we copy the configurations until we get to:

$$
\begin{array}{|l|}
\hline \# C_{0} \ldots \# q_{\text {accept }} c \# \\
\hline \# C_{0} \ldots \# q_{\text {accept }} c \# q_{\text {accept }} \# \\
\hline
\end{array}
$$

So, we add one more tile to our set: $\frac{q_{\text {accept }} \# \#}{\#}$.

A Star is Born

- We need to force our tile $_{1}$ (see slide 6) to be the first tile of any solution.
- Let \star be a new symbol (i.e. not in $\Gamma \cup\{\#\}$).
- For any string, s, let $\star s$ be the string obtained by inserting $\mathrm{a} \star$ before each symbol of s. For example, $\star(a b c)=\star a \star b \star c$.
- For any string, s, let $s \star$ be the string obtained by adding $\mathrm{a} \star$ before each symbol of s. For example, $(a b c) \star=a \star b \star c \star$.
- Finally, $\star s \star$, puts on star between each pair of symbols of s and one star at the beginning of s and one at the end. For example, $\star(a b c) \star=\star a \star b \star c \star$.

From MPCP to PCP

- Given a set of tiles, P for MPCP as described above:
- Replace the initial tile, | $\#$ |
| :---: |
| $\# q_{0} w \# \star$ |
| with |
| $\star \# q_{0} w \# \star$ |
- Replace the final tile, | $q_{\text {accept }} \# \#$ |
| :---: |
| $\#$ |
| with |
| $\star q_{\text {accept }} \# \star \#$ |
| $\#$ |
- For every other tile, \begin{tabular}{|c|}
\hlinet

\hlineb

\hline

 , replace it with

\hline$\star t$

\hline$b \star$

\hline
\end{tabular}

- Now, | $\star \#$ |
| :---: |
| $\star \# q_{0} w \# \star$ |
| must be the first tile of any solution because it is | the only tile that starts and ends with the same symbol.
- We have reduced computational histories for $A_{T M}$ to PCP.
\therefore PCP is undecidable.

Summarizing Reductions

- Turing computable functions.
- Mapping reductions.
- Using reductions to show non-decidability.
- Examples

Turing computable functions

- $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a function over strings of Σ, a finite alphabet.
- f is Turing computable (henceforth, "computable") iff there is some TM that on every input w halts with $f(w)$ (and nothing but $f(w)$) on its tape.
- Examples of computable functions:
- addition, subtract, multiplication of integers encoded as binary (or unary, or decimal, or any base you like) strings.
- Sorting a list of strings into lexigraphical order.
- solution of the Traveling Salesman Problem.
- Examples we've seen in this class
- Transforming a description of a TM (and possibly its input) into the description of another TM (and possibly its input).
- Transforing the description of a TM (and possibly its input) into a string describing another kind of machine such as a PDA, CFG, PCP problem, etc.

Mapping Reductions

- Language A is mapping reducible to language B iff there is a computable function, f such that for every w :

$$
w \in A \quad \Leftrightarrow \quad f(w) \in B
$$

- We write $A \leq_{M} B$ to indicate that A is mapping reducible to B.
- Mapping reducibility is a reflexive and transitive relation:

$$
\begin{gathered}
A \leq_{M} A \\
\left(A \leq_{M} B\right) \wedge\left(B \leq_{M} C\right) \stackrel{A}{\Rightarrow} A \leq_{M} C
\end{gathered}
$$

Mapping and Decidability

- If $A \leq_{M} B$ and B is Turing decidable, then A is decidable.
- Likewise if B is Turing recognizable so is A.
- And so on for co-recognizable, and any other complexity class you want to name.
- If $A \leq_{M} B$ and A is not Turing decidable, then B is not Turing decidable either.

Mapping Examples

- We've shown $\overline{A_{T M}} \leq_{M} E_{T M}$ to show that $E_{T M}$ is undecidable (Oct. 31).
- We've shown $A_{T M} \leq_{M} R E G U L A R$ and $\overline{A_{T M}} \leq_{M} R E G U L A R$ to show that $R E G U L A R$ is undecidable (in fact it is neither Turing recognizable nor Turing co-recognizable) (Nov. 7).
- We've shown $\overline{A_{T M}} \leq{ }_{M} E_{L B A}$ (using computational histories) to show that $E_{L B A}$ is undecidable (Nov. 10).

Let $C F A L L=\left\{G \mid G\right.$ describes a CFG and $\left.L(G)=\Sigma^{*}\right\}$. We've shown $\overline{A_{T M}} \leq_{M} C F A L L$ (using computational histories) to show that $C F A L L$ is undecidable (Nov. 10).

- We've shown $A_{T M} \leq_{M} P C P$ (using computational histories) to show that the Post Correspondence Problem is undecidable (today).

This coming week (and beyond)

- Reading
- Today: Sipser 5.3
- Nov. 14 (Friday): Sipser 7.1
- Nov. 17 (Monday): Sipser 7.2
- Nov. 19 (A week from today): Tutorial by Brad Bingham
- Homework
- Nov. 14 (Friday): HW 10 goes out.
- Nov. 17 (Monday): HW 9 due.

