
Computational Histories
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v Computational Histories
u The Undecidability of ELBA.
u An Undecidability result for CFLs.

v The Post Correspondence Problem

CpSc 421 — 10 November 2008 – p.1/14

Showing Universality
v So far, we’ve used two methods to demonstrate undecidable

results:
u If the computation is being performed by a TM, we show that solving some

problem is at least has hard as solving the halting problem, or AT M , or their
complements.

u We’ve shown that other models of computation have the equivalent

undecidable problems by showing that they can simulate TMs. For example,

we’ve shown that a 2-PDA can simulate a TM.

v Another very general approach is to represent the computation that
a TM performs as a string.

u Some computational models that are not powerful enough to (conveniently)
simulate a TM are powerful enough to be able to recognize valid, accepting
comptations.

u We can then show that questions about the language recognized by these
other models are undecidable.

u Because the computation is given to us (we only have to check that it is valid),

we can show that seemingly weaker models hit the same problems of

undecidability as TMs. CpSc 421 — 10 November 2008 – p.2/14

Turing Machine Configurations
v A Turing Machine is a 7-tuple: (Q, Σ, Γ, δ, q0, qaccept , qreject), where:

v A configuration is a 3-tuple (u, q, v) where
u u ∈ Γ∗ is the tape content to the left of the head.
u v ∈ Q is the current state of the Turing machine.
u v ∈ Γ∗ is the tape content starting at the head and to the right. The first symbol

of v is the current symbol under the tape head. There are an infinite number of
blanks to the right of v.

v M accepts w if there is a sequence of configurations, C0, C1, . . . Ck such that
u C0 = q0 w;
u For all 0 ≤ i < k, Ci

1
−→
M

Ci+1;
u For all 0 ≤ i < k, the state for Ci is not the the reject state; and
u The state for Ck is the accept state.

CpSc 421 — 10 November 2008 – p.3/14

Computational Histories
v TM M = (Q, Σ,Γ, δ, q0, qaccept , qreject) accepts w iff there is a sequence of

configurations C0, C1, . . . Ck such that C0 = q0 w, ∀0 ≤ i < k. Ci
1

−→
M

Ci+1;
∀0 ≤ i < k. Ci is not in the accept or reject state; and Ck = u qaccept v for some
u, v ∈ Γ∗.

v Let # be a symbol that is not in Q or Γ.

v The computational history for M accepting w is C0#C1# . . . #Ck .

v We can use computational histories to reduce ATM and ATM to other problems.

CpSc 421 — 10 November 2008 – p.4/14

A Machine for w#w

εR#

R0,1

Rx

Rx

L0,1,x

L#

L0,1

Rx

finite
state

control

1
x,R

R
x,

0

R#

R#

Rx

R0,1

Lx,0

Lx,1

R accept

...#1 1 0 0 0 1 1 0 00

?

0,l 0,r

=,r =,l

1,l 1,r

v History: q?01100$01100

CpSc 421 — 10 November 2008 – p.5/14

A Machine for w#w

εR#

R0,1

Rx

Rx

L0,1,x

L#

L0,1

Rx

finite
state

control

1
x,R

R
x,

0

R#

R#

Rx

Lx,0

Lx,1

R0,1

R accept

...#1 1 0 0 0 1 1 0 0x

?

0,l 0,r

=,r =,l

1,l 1,r

v History: q?01100$01100 #xq(0,1)1100$01100

CpSc 421 — 10 November 2008 – p.5/14

A Machine for w#w

εR#

R0,1

Rx

Rx

L0,1,x

L#

L0,1

Rx

finite
state

control

1
x,R

R
x,

0

R#

R#

Rx

R0,1

Lx,0

Lx,1

R accept

...#1 1 0 0 0 1 1 0 0x

?

0,l 0,r

=,r =,l

1,l 1,r

v History: q?01100$01100 #xq(0,1)1100$01100 #x1q(0,1)100$01100

CpSc 421 — 10 November 2008 – p.5/14

A Machine for w#w

εR#

R0,1

Rx

Rx

L0,1,x

L#

L0,1

Rx

finite
state

control

1
x,R

R
x,

0

R#

R#

Rx

R0,1

Lx,0

Lx,1

R accept

...#1 1 0 0 0 1 1 0 0x

?

0,l 0,r

=,r =,l

1,l 1,r

v History: q?01100$01100 #xq(0,1)1100$01100 #x1q(0,1)100$01100

#x11q(0,1)00$01100

CpSc 421 — 10 November 2008 – p.5/14

A Machine for w#w

R

R0,1

Rx

Rx

L#

L0,1

Rx

finite
state

control

R
x,

0

R#

R0,1

R#
Lx,0

Lx,1

L0,1,x

R#

1
x,

Rx

R accept

...#x x x x x x x x xx

?

0,l 0,r

=,r =,l

1,l 1,r

ε

v History: q?01100$01100 #xq(0,1)1100$01100 #x1q(0,1)100$01100

#x11q(0,1)00$01100 . . . #xxxxx$xxxxxqǫ�

CpSc 421 — 10 November 2008 – p.5/14

A Machine for w#w
x

R0,1

Rx

Rx

L#

L0,1

Rx

finite
state

control

R
x,

0

R#

R0,1

R#
Lx,0

Lx,1

L0,1,x

R#

1
x,

Rx

R accept

...#x x x x x x xx

?

0,l 0,r

=,r =,l

1,l 1,r

ε

R

x

v History: q?01100$01100 #xq(0,1)1100$01100 #x1q(0,1)100$01100

#x11q(0,1)00$01100 . . . #xxxxx$xxxxxqǫ� #xxxxx$xxxxx�qaccept �

CpSc 421 — 10 November 2008 – p.5/14

Linear Bounded Automata (LBAs)
v An LBA is like a TM except that it has a bounded amount of tape.

v In particular, the input string is bracketted between a
left-endmarker, ⊢, and a right-endmarker ⊣.

u An LBA cannot overwrite either of the endmarkers.
u An LBA cannot move its head past either of the endmarkers.

u Thus, an LBA can only use as many tape squares as were used to write the

input.

v LBAs and decidability
u The halting problem for LBAs is Turing-decidable (but not LBA decidable).

u However, there are questions about LBA computation that are not Turing

decidable. We’ll look at one in the next few slides.

CpSc 421 — 10 November 2008 – p.6/14

ELBA is Undecidable
v ELBA = {B | B describes an LBA and L(B) = ∅}.

v Let VCM,w = {x | x is a valid, computational history in which M accepts w}.

v For any M and w, we construct an LBA, B, such that L(B) 6= ∅ iff
M accepts w.

u B first checks to make sure that its input tape matches
q0w#(Γ∗QΓ∗#)∗Γ∗qacceptΓ∗.
This is a regular language; so, it’s straightforward to make a B that does this
check. If the input fails this check, B rejects.

u Then, B checks each pair of consecutive configurations to make sure that they
correspond to actions of M .

u If each pair is valid, B accepts, else B rejects.

CpSc 421 — 10 November 2008 – p.7/14

Checking pairs of configurations:
v Mark the first symbol of the tape.

Scan to the first symbol of the next configuration and mark it.
Return to the first symbol on the tape.
while(true) {

if(the symbol under the head is in Q)
check a move for the head at the left end of the tape.

else if(the symbol to the right of the marked one is in Q)
check the move for this position.

else make sure the marked symbol on the next
configuration matches this one.

if(the marked symbol on the left is #)
if(the right configuration is the last one)

accept.
else move markers to compare next pair of configurations.

}

v reject if any of these checks fail.

CpSc 421 — 10 November 2008 – p.8/14

Checking Histories: Example
A history for the machine that recognizes w$w:

q?01100$01100#xq(0,1)1100$01100#xxq(0,1)100$01100

#xxxq(0,1)00$01100 . . . #xxxxx$xxxxxqǫ�

#xxxxx$xxxxx�qaccept�

CpSc 421 — 10 November 2008 – p.9/14

ReducingATM to ELBA
v Assume that MELBA

is a TM that decides ELBA.

v MATM
does the following on input M#w:

u Construct the description of B as described above.
u Runs MELBA

with B’s description as input.
u If MELBA

accepts then accept: w 6∈ L(M).
u If MELBA

rejects then reject: w ∈ L(M).
u Note that LBA gets enough tape to decide w ∈ L(M) because

the input includes the entire computational history.

v ATM is not decidable. Thus, ELBA is not decidable either.

CpSc 421 — 10 November 2008 – p.10/14

An Undecidable Problem for CFLs
v Let G be a CFG. L(G) = Σ∗ is undecidable.

v Proof: given M and w we construct a PDA, P , that generates all
strings that are not valid computational histories for M running on
w and accepting. If L(G) = Σ∗, then w 6∈ L(M).

v We have to modify the computational history slightly: we’ll write it
C0#CR

1
#C2#CR

3
. . . Ck (or CR

k if k is odd.

v The CFG is the union of three cases:
u The string is not of the form q0w#(Γ∗QΓ∗#)∗Γ∗qaΓ∗. This is a regular

language.
u There is some i such that Ci+1 is not a valid successor of Ci. P pushes the

string Ci onto its stack and pops it off while reading Ci+1, checking the validity
of the computation.
t If i is even, then it checks the reverse of the configuration string.
t Else i is odd and it checks the forward version.

CpSc 421 — 10 November 2008 – p.11/14

The Post Correspondence Problem
v Given a set, P of pairs of strings:

P =
{ [

t1
b1

]

,
[

t2
b2

]

, . . .
[

tk

bk

] }

where each ti, bi ∈ Σ∗,

v Question: Does there exist a sequence i1, i2, . . . in such that:

ti1ti2 · · · tin
= bi1bi2 · · · bin

Note: the same pair can occur multiple times, i.e. there can be
j 6= m s.t. ij = im.

CpSc 421 — 10 November 2008 – p.12/14

Post Correspondence is undecidable
v Proof by computational histories.

v Sketch:
u Start with a pair that has the initial configuration for a TM on the bottom and an

empty string on top.
u Include pairs in P whose top strings match the current configuration, and

whose bottom strings build the next configuration.
u A bunch of details to:

t Account for moving the tape head.
t Extend the tape with blanks when needed.
t Force the first pair of a solution to be the one that gives the initial

configuration.
t . . .

v We’ll go through the full proof in the next lecture.

CpSc 421 — 10 November 2008 – p.13/14

This coming week (and beyond)
v Reading

u Today: Sipser 5.2
u Nov. 12 (Wednesday): Sipser 5.3
u Nov. 14 (Friday): Sipser 7.1

u Nov. 17 (Friday): Sipser 7.2

v Homework
u (Today): HW 8 due.
u Nov. 14 (Friday): HW 10 goes out.

u Nov. 17 (a week from Today): HW 9 due.

CpSc 421 — 10 November 2008 – p.14/14

	Showing Universality
	Turing Machine Configurations
	Computational Histories
	A Machine for $w#w$
	Linear Bounded Automata (LBAs)
	$ELBA $ is Undecidable
	Checking pairs of configurations:
	Checking Histories: Example
	Reducing $overline {atm }$ to $ELBA $
	An Undecidable Problem for CFLs
	The Post Correspondence Problem
	Post Correspondence is undecidable
	This coming week (and beyond)

