
Reductions Redux
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v Reductions in Java

v A Hierarchy of hard problems

CpSc 421 — 7 November 2008 – p.1/17

Reductions in Java
v A language is a set of strings. Let A be a language.

v A java method that takes a string as an argument and returns a
boolean can be a decider or a recognizer for a language.

u If the method returns true for every string in the language and returns false
for every string that is not in the language, then that method is a decider.

u If the method returns true for every string in the language and returns false

or “loops” for every string that is not in the language, then that method is a

recognizer.

CpSc 421 — 7 November 2008 – p.2/17

Previous Results, HALT

From previous lectures, we know that:
v There is no TM that decides HALT where

HALT = {M#w | M is a TM that halt when run with input w}

u By the equivalence of Java programs and TMs, we conclude that there is no
Java method that decides HALT (or any other programming language).

u Furthermore, we can define

HALTJ = {J#s | J is a Java program that halts when run with input s}

For simplicity, we’ll assume that the “input” to a Java program is a string. Note
that we can take any collection of parameters of any types and represent them
with strings.

u HALTJ cannot be decided by any TM or Java program (or any program in any
other language).

u HALT and HALTJ can be recognized by a TM or a Java program.

CpSc 421 — 7 November 2008 – p.3/17

Previous Results, ATM and ETM
v ATM = {M#w | TM M accepts string w}.

u AT M is Turing and Java recognizable but is neither Turing nor Java decidable.

u We can define AJava in the obvious manner, and it is Turing and Java

recognizable, but neither Turing nor Java decidable.

v ETM = {M | L(M) = ∅}.
u ET M is Turing and Java co-recognizable, but is neither Turing nor Java

decidable.
u This means that there is a TM (equivalently Java program) that rejects every

string that is not in ET M and for any string in ET M either accepts or loops.

u We can define EJava in the obvious manner, and it is Turing and Java

co-recognizable, but neither Turing nor Java decidable.

CpSc 421 — 7 November 2008 – p.4/17

Some handy Java methods
I’ll assume that we have the following Java methods available:

String[] getArgs(String s) {

/* return an array, args, such that

* s = args[0] + ’#’ + args[1] + ...

* ’#’ + args[args.length-1]

* and none of the args strings contain the ’#’ character.

*/

}

boolean simulate(String J, String s) {

/* Simulate java program J running with input s. */

/* If J not a valid program, return(false). */

/* Else if J accepts s, return true. */

/* Else if J rejects s, return false. */

/* Else (J loops on s) never return. */

}

boolean simulate(String s) {

String[] args = getArgs(s);

if(args.length 6= 2) return(false);

return(simulate(args[0], args[1]));

} CpSc 421 — 7 November 2008 – p.5/17

Some more handy methods

boolean anbn(String s) {

// return true if there is an integer, n, such that s = anbn. ...

}

CpSc 421 — 7 November 2008 – p.6/17

REGULAR and Java
v REGULAR = {M | L(M) is regular, M describes a TM}.

v REGULARJ = {J | L(J) is regular, J is the source code of a Java program}.

v Reducing AJ to REGULAR (using Java)
u Assume we have a method

boolean regularJ(String J) { ...}

That decides language REGULARJ .
u We use regular to write a Java method that decides J .
boolean aJ(String s) { /* return true if s = J#w and J accepts w */

return(regular(

"boolean foo(String x) {"

+ " if(anbn(x))"

+ " return(true);"

+ " else"

+ " return(simulate(" + s + "));"

+ "}"

)); }

CpSc 421 — 7 November 2008 – p.7/17

REGULARJ (cont)
v From previous slide

boolean aJ(String s) { /* return true if s = J#w and J accepts w */

return(regular(

"boolean foo(String x) {"

+ " if(anbn(x))"

+ " return(true);"

+ " else"

+ " return(simulate(" + s + "));"

+ "}"

)); }

v If s is a string of the form J#w and Java program J accepts input w, then foo

accepts all strings. Otherwise, foo only accepts strings of the form anbn.

v In other words, the language of foo is regular iff J accepts w.

v If we could decide REGULARJ , we could also decide AJ .

v AJ is not decidable (just like AT M). Therefore REGULAR is not decidable either.

CpSc 421 — 7 November 2008 – p.8/17

REGULAR is not decidable (TM-1)
v If REGULAR were decidable, then there would be a TM, MREG that decides it.

v We’ll show that if we had MREG , we could build another TM, MAT M
that would

decide AT M .

v When run with input string s, here’s what MAT M
will do:

u Compute the description of a TM, Mfoo :
If run with input x, Mfoo will
t Check to see if x has the form anbn and if so accept.
t Otherwise, Mfoo simulates M running with input w.

sIf M accepts w, then Mfoo accepts x.
sIf M rejects w, then Mfoo rejects x.
sIf M loops on w, then Mfoo loops on x.

Note that L(Mfoo) is regular iff M accepts w.
u MAT M

now runs MREG on the description of Mfoo .
t If MREG accepts Mfoo then MAT M

accepts s (i.e. M#w).
t If MREG rejects Mfoo then MAT M

reject s.
t If MREG cannot loop on Mfoo because it was assumed to be a decider.

CpSc 421 — 7 November 2008 – p.9/17

REGULAR is not decidable (TM-2)
v If we had a TM, MREG that was a decider for the language

REGULAR,

v Then we could construct a TM, MAT M
that would be a decider for

ATM .

v We know that ATM is not decidable.

v Thus, we cannot build a decider for REGULAR.

v Therefore, REGULAR is not Turing decidable.

CpSc 421 — 7 November 2008 – p.10/17

Reducing ATM to REGULAR
v This time, our M

AT M
will compute th description of Mbar.

u Mbar simulates M running with input w.
t If M accepts w, then Mbar checks to see if x has the form anbn.

sIf x has the form anbn, Mbar accepts x.
sOtherwise, Mbar rejects x.

t If M rejects w, then Mbar rejects x.
t If M loops on w, then Mbar loops on x.

L(Mbar) is regular iff M rejects w.

v If we had a TM, MREG that was a decider for the language REGULAR,
u Then we could construct a TM, M

AT M
that would be a decider for AT M .

u We know that AT M is not decidable.
u Thus, we cannot build a decider for REGULAR.
u Therefore, REGULAR is not Turing decidable.

CpSc 421 — 7 November 2008 – p.11/17

ATM to REGULAR in Java
v This time, we write

boolean aJbar(String s) { /* return true s = J#w and J rejects w */

return(regular(

"boolean bar(String x) {"

+ " if(simulate(" + s + "))"

+ " if(anbn(x)) return(true);"

+ " else return(false);"

+ " else return(false);"

+ "}"

)); }

v If s is a string of the form J#w and Java program J accepts input w, then bar

accepts strings of the form anbn. Otherwise, bar rejects or loops on all strings.

v In other words, the language of bar is regular iff J does not accept w.

v If we could decide REGULARJ , we could also decide AJ which is equivalent to
AT M .

v AT M is not decidable. Therefore REGULAR is not decidable either.

CpSc 421 — 7 November 2008 – p.12/17

How hard is REGULAR?
v We cannot reduce REGULAR to ATM . Why not?

u If we could, then we could reduce AT M to AT M – we’ve shown that we can
reduce AT M to REGULAR.

u Then, we could build a decider for AT M :
Given an input M#w, we could run a recognizer for AT M and a recognizer for
AT M until one accepts. If the recognizer for AT M accepts, we accept, and if
the recognizer for AT M accepts, then we reject.

u But, AT M is not decidable.

u Therefore, we can’t reduce REGULAR to AT M .

v We cannot reduce REGULAR to ATM either.
The proof has the same form as the proof above.

CpSc 421 — 7 November 2008 – p.13/17

Quantifying Decidability
v <ExtraCredit>

v A language, A, is Turing decidable iff there is a TM that decides it.
u Examples: any regular or context free language, testing for primality, any

NP-complete problem, anything for which you have an algorithm.

v A language, B, is Turing recognizable iff there is a Turing decidable langauge A

such that:

B = {s | ∃x. s † x ∈ A}

u Example, HALT . Let

A = {M#w † n | M describes a Turing machine, w describes a string, and

n is the binary representation of an integer, such that TM

M halts within n steps when run with input w.}

A is decidable (see midterm 2). Thus, HALT is Turing recognizable.
u In this case, we used the existential quantifier to say that if M accepts w, then

there must be some integer n such that M accepts w after at most n steps.
This can be verified by simulating M for at most n steps.

CpSc 421 — 7 November 2008 – p.14/17

Quantifying Decidability
v Let accept(M, w, n) denote that TM M accepts w after at most n steps.

v A language, E, is Turing co-recognizable iff there is a Turing decidable langauge A

such that:

B = {s | ∀x. s † x ∈ A}

u Examples

AT M = {M#w | ¬∃n. accept(M, w, n)

= {M#w | ∀n. ¬accept(M, w, n)

ET M = {M | ∀w, n. ¬accept(M, w, n)}

v What about REGULAR?

REGULAR = {M#w | ∃D. ∀w.

DFArecognize(D, w) ⇒ ∃n. accept(M, w, n)

∧ ¬DFArecognize(D, w) ⇒ ∀n. ¬accept(M, w, n)

CpSc 421 — 7 November 2008 – p.15/17

The Arithmetic Hierarchy

Π1 = ∀x1. p(s, x1)

Decidable: p(s)

E.g. ETM

Σ1 = ∃x1. p(s, x1)
E.g. HALT , ATM

Σ2 = ∃x2. ∀x1. p(s, x1, x2) Π2 = ∀x2. ∃x1. p(s, x1, x2)

E.g. TOTAL

E.g. REGULAR

Σ3 = ∃x3. ∀x2. ∃x1. p(s, x1, x2, x3) Π3 = ∀x3. ∃x2. ∀x1. p(s, x1, x2, x3)

E.g. FINITE

v </ExtraCredit>

CpSc 421 — 7 November 2008 – p.16/17

This coming week (and beyond)
v Reading

u Today: Sipser 5.1
u Nov. 10 (Monday): Sipser 5.2
u Nov. 12 (Wednesday): Sipser 5.3

u Nov. 14 (A week from today): Sipser 7.1

v Homework
u Today: HW 9 goes out.
u Nov. 10 (Monday): HW 8 due.
u Nov. 14 (a week from today): HW 10 goes out.

u Nov. 17 (a week from Monday): HW 9 due.

CpSc 421 — 7 November 2008 – p.17/17

	Reductions in Java
	Previous Results, $mathit {HALT}$
	Previous Results, A_{TM} and E_{TM}
	Some handy Java methods
	Some more handy methods
	$mathit {REGULAR}$ and Java
	$mathit {REGULAR}_J$ (cont)
	$mathit {REGULAR}$ is not decidable (TM-1)
	$mathit {REGULAR}$ is not decidable (TM-2)
	Reducing $overline {A_{TM}}$ to REGULAR
	$overline {A_{TM}}$ to REGULAR in Java
	How hard is $mathit {REGULAR}$?
	Quantifying Decidability
	Quantifying Decidability
	The Arithmetic Hierarchy
	This coming week (and beyond)

