Reductions Redux

Mark Greenstreet, CpSc 421, Term 1, 2008/09

@® Reductions in Java

@ A Hierarchy of hard problems

CpSc 421 — 7 November 2008 — p.1/17

Reductionsin Java

® A language is a set of strings. Let A be a language.

® A java method that takes a string as an argument and returns a
boolean can be a decider or a recognizer for a language.

® If the method returns t r ue for every string in the language and returns f al se
for every string that is not in the language, then that method is a decider.

® If the method returns t r ue for every string in the language and returns f al se
or “loops” for every string that is not in the language, then that method is a

recognizer.

CpSc 421 — 7 November 2008 — p.2/17

Previous Results, HALT

From previous lectures, we know that:
® There is no TM that decides HALT where

HALT = {M+#w | M isaTM that halt when run with input w }

® By the equivalence of Java programs and TMs, we conclude that there is no
Java method that decides HA LT (or any other programming language).

® Furthermore, we can define
HALT; = {J+#s | JisaJava program that halts when run with input s }

For simplicity, we’ll assume that the “input” to a Java program is a string. Note
that we can take any collection of parameters of any types and represent them
with strings.

® HALT j cannot be decided by any TM or Java program (or any program in any
other language).

® HALT and HALT ; can be recognized by a TM or a Java program.

CpSc 421 — 7 November 2008 — p.3/17

Previous Results, A+, and Epyy

® Apy = {M#w | TM M accepts string w }.
® Arp,, is Turing and Java recognizable but is neither Turing nor Java decidable.

® We can define Aj,,, in the obvious manner, and it is Turing and Java
recognizable, but neither Turing nor Java decidable.

® Ery ={M|L(M)=0}.
® FEr,s is Turing and Java co-recognizable, but is neither Turing nor Java
decidable.
® This means that there is a TM (equivalently Java program) that rejects every
string that is not in E1,, and for any string in E1p; either accepts or loops.
® We can define E,,, In the obvious manner, and it is Turing and Java
co-recognizable, but neither Turing nor Java decidable.

CpSc 421 — 7 November 2008 — p.4/17

Some handy Java methods

I'll assume that we have the following Java methods available:

String[] getArgs(String s) {
/* return an array, args, such that
* s = args[0] + " '# + args[1l] + ...

* "# + args[args.length-1]
* and none of the args strings contain the '# character.
*/

}

bool ean sinulate(String J, String s) {
[* Sinmulate java program J running with input s. */
[* If J not a valid program return(false). */
/* Else if J accepts s, return true. */
/* Else if J rejects s, return false. */
/* Else (J loops on s) never return. */

}

bool ean sinulate(String s) {
String[] args = getArgs(s);
i f(args.length # 2) return(false);
return(sinulate(args[0], args[1]));

} CpSc 421 — 7 November 2008 — p.5/17

Some mor e handy methods

bool ean anbn(String s) {
/1l return true if there is an integer, n, such that s =a"b".

}

CpSc 421 — 7 November 2008 — p.6/17

REGULAR and Java

® REGULAR = {M | L(M)is regular, M describes a TM}.

® REGULAR; = {J | L(J)isregular, J is the source code of a Java program}.

@ Reducing A to REGULAR (using Java)
® Assume we have a method
bool ean regularJ(String J) { ...}
That decides language REGULAR ;.

® We userequl ar to write a Java method that decides J.

bool ean aJ(String s) { /* return true if s = J#w and J accepts w

return(regqgul ar(
"bool ean foo(String x) {"

! | f (anbn(x))"
' return(true);”
el se"

return(sinmulate(" + s + "));"

e

-— + + + + +

));

CpSc 421 — 7 November 2008 — p.7/17

REGULAR; (cont)

@ From previous slide

bool ean aJ(String s) { /* return true if s = J#w and J accepts w */
return(regqgul ar(
"bool ean foo(String x) {"

+ I f (anbn(x))"
+ return(true);”
+ el se"
+ return(sinmulate(" + s + "));"
+ "
));)

@ |If sis a string of the form J#w and Java program J accepts input w, then f 0o
accepts all strings. Otherwise, f oo only accepts strings of the form a™b™.

In other words, the language of f oo is regular iff J accepts w.

If we could decide REGULAR j, we could also decide A ;.

@ A is not decidable (just like Arys). Therefore REGULAR is not decidable either.

CpSc 421 — 7 November 2008 — p.8/17

REGULAR isnot decidable (TM-1)

® If REGULAR were decidable, then there would be a TM, Mz that decides it.

@® \We'll show that if we had Mrxzq, we could build another TM, M4, , that would
decide A1j,.

@ When run with input string s, here’s what M4 .,, Will do:

® Compute the description of a TM, My,,,:

If run with input =, M, will

® Check to see if x has the form a™b™ and if so accept.

® Otherwise, My,, simulates M running with input w.
e If M accepts w, then My,, accepts x.
e If M rejects w, then My, rejects x.
e If M loops on w, then My, loops on x.

Note that L(My,,) is regular iff M accepts w.

® My, Nnowruns Mprgg on the description of My,,,.
® If Mrpg accepts My, then My, accepts s (i.e. M#w).
® If MrEc rejects My, then M 4..,, reject s.
® If MrEgc cannotloop on My, because it was assumed to be a decider.

CpSc 421 — 7 November 2008 — p.9/17

REGULAR isnot decidable (TM-2)

® If we had a TM, Mzgq that was a decider for the language
REGULAR,

® Then we could construct a TM, M 4...,, that would be a decider for

AT

® We know that A7, 1S not decidable.
® Thus, we cannot build a decider for REGULAR.

® Therefore, REGULAR is not Turing decidable.

CpSc 421 — 7 November 2008 — p.10/17

Reducing A7y, to REGULAR

@® This time, our Mm will compute th description of My,

® M, simulates M running with input w.
® If M accepts w, then M,,,- checks to see if z has the form a™b™.
e If x has the form a™b™, My, accepts .
e Otherwise, My, rejects x.
® |If M rejects w, then My, rejects x.
® If M loops on w, then My, loops on x.

L(My,,) is regular iff M rejects w.

@® |fwe had a TM, Mg that was a decider for the language REGULAR,

® Then we could construct a TM, Mm that would be a decider for A7 ,,.

® We know that A7, is not decidable.
® Thus, we cannot build a decider for REGULAR.
® Therefore, REGULAR is not Turing decidable.

CpSc 421 — 7 November 2008 — p.11/17

A7y to REGULAR In Java

@® This time, we write

bool ean aJbar(String s) { /* return true s = J#w and J rejects w */
return(regul ar(
"bool ean bar(String x) {"

+ " I f(simulate(" + s + "))"
+ i f (anbn(x)) return(true);"
+ " el se return(false);"
+ el se return(false);"
+ ")
));)

@ |If sis a string of the form J#w and Java program J accepts input w, then bar
accepts strings of the form a™b™. Otherwise, bar rejects or loops on all strings.

In other words, the language of bar is regular iff J does not accept w.

If we could decide REGULAR ;, we could also decide A ; which is equivalent to

Arr.

@® A, isnotdecidable. Therefore REGULAR is not decidable either.

CpSc 421 — 7 November 2008 — p.12/17

How hard iIs REGULAR?

® We cannot reduce REGULAR to Arjy;. Why not?

® If we could, then we could reduce A7 s to Ay — we've shown that we can
reduce Arys to REGULAR.

® Then, we could build a decider for A7
Given an input M #w, we could run a recognizer for At ; and a recognizer for
A s until one accepts. If the recognizer for A1 accepts, we accept, and if
the recognizer for A1, accepts, then we reject.

® But, A7, is not decidable.

® Therefore, we can’'treduce REGULAR t0 A1yy.

® We cannot reduce REGULAR to Ar,, either.
The proof has the same form as the proof above.

CpSc 421 — 7 November 2008 — p.13/17

Quantifying Decidability

@® <ExtraCedit>

@ A language, A, is Turing decidable iff there is a TM that decides it.
® Examples: any regular or context free language, testing for primality, any
NP-complete problem, anything for which you have an algorithm.

@ A language, B, is Turing recognizable iff there is a Turing decidable langauge A
such that:

B={s|dzx.stx € A}

® Example, HALT. Let

A = {M+#wtn| M describes a Turing machine, w describes a string, and
T is the binary representation of an integer, such that TM
M halts within n. steps when run with input w. }

A is decidable (see midterm 2). Thus, HALT is Turing recognizable.

@ In this case, we used the existential quantifier to say that if M accepts w, then
there must be some integer n such that M accepts w after at most n steps.
This can be verified by simulating M for at most n steps.

CpSc 421 — 7 November 2008 — p.14/17

Quantifying Decidability

@ Let accept(M,w,n) denote that TM M accepts w after at most n steps.

@ A language, E, is Turing co-recognizable iff there is a Turing decidable langauge A
such that:

B={s|Vx.stx € A}

® Examples

Ary = {M+#w | =3n. accept(M,w,n)
= {M#w | Vn. —accept(M,w,n)

Erye = {M | Vw,n. ~accept(M,w,n)}

@® \What about REGULAR?

REGULAR = {M#w |3D.Vuw.
DFArecognize(D,w) = In. accept(M,w,n)
A DFArecognize(D,w) = ¥Yn. ~accept(M,w,n)

CpSc 421 — 7 November 2008 — p.15/17

TheArithmetic Hierarchy

Y3 = Jx3. Ve, Jz1. p(Ss, 11, 29, 3) I3 = Vas. dxo. V1. p(s, 1, 2, T3)
Eg. REGULAR
Yo = dxy. V1. p(s, x1, x2) Iy = Vao. 3x1. p(s, 21, 2)
£q. FINITE £qg. TOTAL

¥ = dxy. p(s, zq) [T, = Vxi. p(s, z1)
E.g. HALT, ATM E.g. Ery

Decidable: p

® </ExtraCredi t>

CpSc 421 — 7 November 2008 — p.16/17

Thiscoming week (and beyond)

® Reading
® Today: Sipser 5.1
® Nov. 10 (Monday): Sipser 5.2
® Nov. 12 (Wednesday): Sipser 5.3

® Nov. 14 (A week from today): Sipser 7.1
® Homework
® Today: HW 9 goes out.

® Nov. 10 (Monday): HW 8 due.
® Nov. 14 (a week from today): HW 10 goes out.

@® Nov. 17 (a week from Monday): HW 9 due.

CpSc 421 — 7 November 2008 — p.17/17

	Reductions in Java
	Previous Results, $mathit {HALT}$
	Previous Results, A_{TM} and E_{TM}
	Some handy Java methods
	Some more handy methods
	$mathit {REGULAR}$ and Java
	$mathit {REGULAR}_J$ (cont)
	$mathit {REGULAR}$ is not decidable (TM-1)
	$mathit {REGULAR}$ is not decidable (TM-2)
	Reducing $overline {A_{TM}}$ to REGULAR
	$overline {A_{TM}}$ to REGULAR in Java
	How hard is $mathit {REGULAR}$?
	Quantifying Decidability
	Quantifying Decidability
	The Arithmetic Hierarchy
	This coming week (and beyond)

