Reductions Redux

Mark Greenstreet, CpSc 421, Term 1, 2008/09

Reductions in Java

A Hierarchy of hard problems

Reductions in Java

- A language is a set of strings. Let A be a language.
- A java method that takes a string as an argument and returns a boolean can be a decider or a recognizer for a language.
 - If the method returns true for every string in the language and returns false for every string that is not in the language, then that method is a decider.
 - If the method returns true for every string in the language and returns false or "loops" for every string that is not in the language, then that method is a recognizer.

Previous Results, HALT

From previous lectures, we know that:

There is no TM that decides HALT where

 $HALT = \{M \# w \mid M \text{ is a TM that halt when run with input } w\}$

- By the equivalence of Java programs and TMs, we conclude that there is no Java method that decides HALT (or any other programming language).
- Furthermore, we can define

 $HALT_J = \{J \# s \mid J \text{ is a Java program that halts when run with input } s\}$

For simplicity, we'll assume that the "input" to a Java program is a string. Note that we can take any collection of parameters of any types and represent them with strings.

- HALT J cannot be decided by any TM or Java program (or any program in any other language).
- HALT and $HALT_J$ can be recognized by a TM or a Java program.

Previous Results, A_{TM} and E_{TM}

- $A_{TM} = \{M \# w \mid \mathsf{TM} \ M \text{ accepts string } w\}.$
 - A_{TM} is Turing and Java recognizable but is neither Turing nor Java decidable.
 - We can define A_{Java} in the obvious manner, and it is Turing and Java recognizable, but neither Turing nor Java decidable.
- $E_{TM} = \{M \mid L(M) = \emptyset\}.$
 - E_{TM} is Turing and Java co-recognizable, but is neither Turing nor Java decidable.
 - This means that there is a TM (equivalently Java program) that rejects every string that is not in E_{TM} and for any string in E_{TM} either accepts or loops.
 - We can define E_{Java} in the obvious manner, and it is Turing and Java co-recognizable, but neither Turing nor Java decidable.

Some handy Java methods

I'll assume that we have the following Java methods available:

```
String[] getArgs(String s) {
    /* return an array, args, such that
         s = args[0] + '\#' + args[1] + ...
     *
                         '#' + args[args.length-1]
     *
     * and none of the args strings contain the '#' character.
     * /
}
boolean simulate(String J, String s) {
    /* Simulate java program J running with input s. */
    /* If J not a valid program, return(false). */
    /* Else if J accepts s, return true. */
    /* Else if J rejects s, return false. */
    /* Else (J loops on s) never return. */
boolean simulate(String s) {
    String[] args = getArgs(s);
    if(args.length \neq 2) return(false);
    return(simulate(args[0], args[1]));
}
                                          CpSc 421 — 7 November 2008 – p.5/17
```

Some more handy methods

```
boolean anbn(String s) { // return true if there is an integer, n, such that s = a^n b^n. }
```

REGULAR and Java

- $REGULAR = \{M \mid L(M) \text{ is regular, } M \text{ describes a TM} \}.$
- $REGULAR_J = \{J \mid L(J) \text{ is regular, } J \text{ is the source code of a Java program}\}.$
- Reducing A_J to REGULAR (using Java)
 - Assume we have a method

```
boolean regularJ(String J) { ...}
```

```
That decides language REGULAR_J.
```

• We use regular to write a Java method that decides J.

```
boolean aJ(String s) { /* return true if s = J#w and J accepts w 
return(regular(
```

```
"boolean foo(String x) {"
+ " if(anbn(x))"
+ " return(true);"
+ " else"
+ " return(simulate(" + s + "));"
+ "}"
)); }
```

$REGULAR_J$ (cont)

From previous slide

```
boolean aJ(String s) { /* return true if s = J#w and J accepts w */
return(regular(
    "boolean foo(String x) {"
    + " if(anbn(x))"
    + " return(true);"
    + " else"
    + " return(simulate(" + s + "));"
```

```
+ "}"
)); }
```

- If s is a string of the form J # w and Java program J accepts input w, then foo accepts all strings. Otherwise, foo only accepts strings of the form $a^n b^n$.
- In other words, the language of $f \circ o$ is regular iff J accepts w.
- If we could decide $REGULAR_J$, we could also decide A_J .
- A_J is not decidable (just like A_{TM}). Therefore REGULAR is not decidable either.

REGULAR is not decidable (TM-1)

- If REGULAR were decidable, then there would be a TM, M_{REG} that decides it.
- We'll show that if we had M_{REG} , we could build another TM, $M_{A_{TM}}$ that would decide A_{TM} .
- When run with input string s, here's what $M_{A_{TM}}$ will do:
 - Compute the description of a TM, M_{foo} : If run with input x, M_{foo} will
 - Check to see if x has the form $a^n b^n$ and if so accept.
 - Otherwise, M_{foo} simulates M running with input w.
 - If M accepts w, then M_{foo} accepts x.
 - If M rejects w, then M_{foo} rejects x.
 - If M loops on w, then M_{foo} loops on x.

Note that $L(M_{foo})$ is regular iff M accepts w.

- $M_{A_{TM}}$ now runs M_{REG} on the description of M_{foo} .
 - If M_{REG} accepts M_{foo} then $M_{A_{TM}}$ accepts s (i.e. M # w).
 - If M_{REG} rejects M_{foo} then $M_{A_{TM}}$ reject s.
 - If M_{REG} cannot loop on M_{foo} because it was assumed to be a decider.

REGULAR is not decidable (TM-2)

- If we had a TM, M_{REG} that was a decider for the language REGULAR,
- Then we could construct a TM, $M_{A_{TM}}$ that would be a decider for A_{TM} .
- We know that A_{TM} is not decidable.
- Thus, we cannot build a decider for *REGULAR*.
- Therefore, *REGULAR* is not Turing decidable.

Reducing $\overline{A_{TM}}$ to **REGULAR**

This time, our $M_{\overline{A_{TM}}}$ will compute th description of M_{bar} .

- M_{bar} simulates M running with input w.
 - If M accepts w, then M_{bar} checks to see if x has the form $a^n b^n$.
 - If x has the form $a^n b^n$, M_{bar} accepts x.
 - Otherwise, M_{bar} rejects x.
 - If M rejects w, then M_{bar} rejects x.
 - If M loops on w, then M_{bar} loops on x.

 $L(M_{bar})$ is regular iff M rejects w.

If we had a TM, M_{REG} that was a decider for the language REGULAR,

- Then we could construct a TM, $M_{\overline{A_{TM}}}$ that would be a decider for $\overline{A_{TM}}$.
- We know that $\overline{A_{TM}}$ is not decidable.
- Thus, we cannot build a decider for REGULAR.
- Therefore, REGULAR is not Turing decidable.

$\overline{A_{TM}}$ to **REGULAR** in Java

This time, we write

```
boolean aJbar(String s) { /* return true s = J#w and J rejects w */
    return(regular(
```

```
"boolean bar(String x) {"
+ " if(simulate(" + s + "))"
+ " if(anbn(x)) return(true);"
+ " else return(false);"
+ " else return(false);"
+ "}"
)); }
```

- If s is a string of the form J # w and Java program J accepts input w, then bar accepts strings of the form $a^n b^n$. Otherwise, bar rejects or loops on all strings.
- In other words, the language of bar is regular iff J does not accept w.
- If we could decide $REGULAR_J$, we could also decide $\overline{A_J}$ which is equivalent to $\overline{A_{TM}}$.
- $\overline{A_{TM}}$ is not decidable. Therefore REGULAR is not decidable either.

How hard is REGULAR?

- We cannot reduce REGULAR to A_{TM} . Why not?
 - If we could, then we could reduce $\overline{A_{TM}}$ to A_{TM} we've shown that we can reduce $\overline{A_{TM}}$ to REGULAR.
 - Then, we could build a decider for A_{TM} : Given an input M # w, we could run a recognizer for A_{TM} and a recognizer for $\overline{A_{TM}}$ until one accepts. If the recognizer for A_{TM} accepts, we accept, and if the recognizer for $\overline{A_{TM}}$ accepts, then we reject.
 - But, A_{TM} is not decidable.
 - Therefore, we can't reduce REGULAR to A_{TM} .
- We cannot reduce REGULAR to $\overline{A_{TM}}$ either. The proof has the same form as the proof above.

Quantifying Decidability

- <ExtraCredit>
- A language, A, is Turing decidable iff there is a TM that decides it.
 - Examples: any regular or context free language, testing for primality, any NP-complete problem, anything for which you have an algorithm.
- A language, B, is Turing recognizable iff there is a Turing decidable langauge A such that:

$$B = \{s \mid \exists x. \ s \dagger x \in A\}$$

- Example, HALT. Let
 - $A = \{M \# w \dagger n \mid M \text{ describes a Turing machine, } w \text{ describes a string, and} \\ n \text{ is the binary representation of an integer, such that TM} \\ M \text{ halts within } n \text{ steps when run with input } w. \}$

A is decidable (see midterm 2). Thus, HALT is Turing recognizable.

In this case, we used the existential quantifier to say that if M accepts w, then there must be some integer n such that M accepts w after at most n steps. This can be verified by simulating M for at most n steps.

Quantifying Decidability

- Let accept(M, w, n) denote that TM M accepts w after at most n steps.
- A language, E, is Turing co-recognizable iff there is a Turing decidable langauge A such that:

$$B = \{s \mid \forall x. \ s \dagger x \in A\}$$

Examples

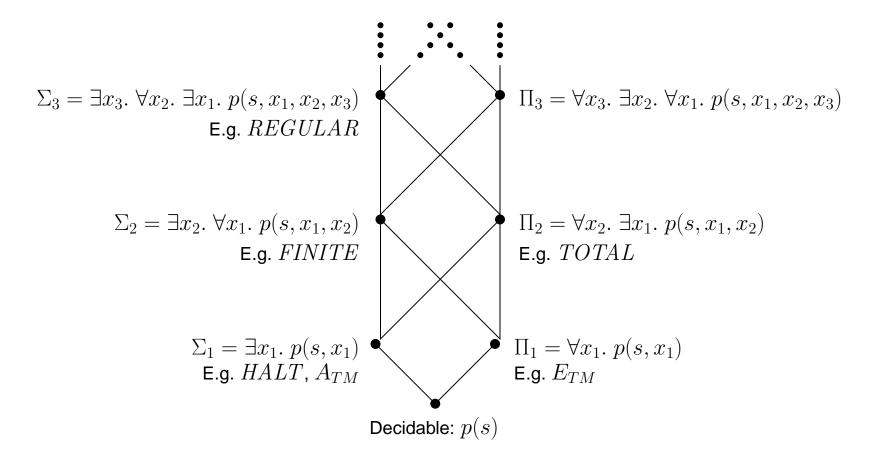
$$\overline{A_{TM}} = \{M \# w \mid \neg \exists n. \ accept(M, w, n) \\ = \{M \# w \mid \forall n. \neg accept(M, w, n) \}$$

$$\overline{E_{TM}} = \{M \mid \forall w, n. \neg accept(M, w, n)\}$$

What about *REGULAR*?

$$\begin{split} REGULAR &= \{ M \# w \mid \exists D. \; \forall w. \\ DFArecognize(D,w) \Rightarrow \exists n. \; accept(M,w,n) \\ \land \quad \neg DFArecognize(D,w) \Rightarrow \forall n. \; \neg accept(M,w,n) \end{split}$$

The Arithmetic Hierarchy



This coming week (and beyond)

Reading

- Today: Sipser 5.1
- Nov. 10 (Monday): Sipser 5.2
- Nov. 12 (Wednesday): Sipser 5.3
- Nov. 14 (A week from today): Sipser 7.1
- Homework
 - Today: HW 9 goes out.
 - Nov. 10 (Monday): HW 8 due.
 - Nov. 14 (a week from today): HW 10 goes out.
 - Nov. 17 (a week from Monday): HW 9 due.