
Reductions
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v The Idea of Using Reductions

v Proving Undecidable Problems Using Reductions

CpSc 421 — 31 October 2008 – p.1/14

Reductions
Let’s say we want to solve problem of class A and we
know how to solve problems of class B.

v If for every problem of class A, we can find a way to convert it into
some problem of class B, . . .

v then, we can solve all problems of class A using our method for
solving problems of class B.

v We can also talk about how much effort is need to transform the
problem. For most of what we are interested in here, it is enough
that the transformation can be computed by a Turing machine.

CpSc 421 — 31 October 2008 – p.2/14

Reducing Multiplication to Addition
v We can convert the problem of multiplying natural numbers into the problem of

addition:

product = 0;

for(int i = 0; i < x; i++)

product = product + y;

We have reduced multiplication to addition.
v We can do better if we allow bit shifts and tests:

product = 0;

while(x > 0) {

if(odd(x)) product = product + y;

x = x >> 1; y = y << 1;

}

We have reduced multiplication to addition and bit shifts and tests.
v How about if we have addition, right shifts, and squaring?

product = ((x+y)ˆ2 - (x-y)ˆ2) >> 2;

CpSc 421 — 31 October 2008 – p.3/14

More Examples
v Scheduling problems that are linear programs.

v Routing problems that are shortest path in a graph.

v Some problems that look NP complete are bipartite matching in
disguise.

v NP completeness proofs are often done by reduction.

v The whole idea of programming with an API is the practical use of
reductions: reducing parts of a software project to functionality that
is already present in the API.

CpSc 421 — 31 October 2008 – p.4/14

A Warning
v We can show that B is at least as hard as A by reducing A to B.

v Reducing A to B shows that A is at least as easy as B.

v Let A = {w | w is the binary representation of a composite number}. We can
reduce A to the halting problem:

i = 2;

while(true) {

if((i != w) && (w % i) == 0) accept();

i = i+1;
}

This program halts iff w is composite. Thus, we have shown that
testing for compositeness in no harder than the halting problem. In
fact, it is much easier.

CpSc 421 — 31 October 2008 – p.5/14

The Halting Problem (again)
v Let HALT = {M#w | Turing machine M halts when run with input w}.

v We can reduce ATM to HALT :
u Create a Turing machine N that on input M#w

u N creates a string M ′#w where M ′ is like M but has a new state, loop.
u All transitions of M to state reject are replaced with transitions to loop.

sIf M accepts w so does M ′.
sIf M rejects or loops on w, M ′ loops.
sThus, M#w in ATM iff M ′#w ∈ HALT .

u N now runs HALT on M ′#w.
t If HALT accepts, N accepts.
t If HALT rejects, N rejects.

u N recognizes ATM .

v This shows that HALT is at least as hard as ATM .

v ATM is undecidable, therefore HALT is undecidable.

v We can show that HALT reduces to ATM ; thus HALT and ATM

are equivalent in hardness.
CpSc 421 — 31 October 2008 – p.6/14

A Recipe For Reduction
Want to show: B � A (B is at least as hard as A).

TM: turn instance
of A to instance
of B.

β

α

Decider/recognizer
for B

Accept Reject

Accept Reject

v We show that we can translate any question of the
form “α ∈ A?” to a question of the form “β ∈ B?”.

u Given a string α we compute a string β.
u If this transformation can be done by a TM in

a finite number of steps, then we say that it is
“Turing reducible.”

v Typically, A is a question about the languages or
strings that a TM decides or recognizes.

u This is because we have shown some
undecidable problems for TMs (e.g. HALT

and ATM).
u Thus, α is often of the form M or M#w

where M is the description of a TM, and w is
the description of an input string to M .

CpSc 421 — 31 October 2008 – p.7/14

A Recipe For Reduction
Want to show: B � A (B is at least as hard as A).

TM: turn instance
of A to instance
of B.

β

α

Decider/recognizer
for B

Accept Reject

Accept Reject

v B may be a question about the language the
behaviour of TMs or some other model.

u B is the language that we want to show is
hard to decide and/or recognize?

u Thus, β is often of the form N or N#x where
N is the description of a TM, a 2-PDA, a ray
automaton, . . . , and x is the description of an
input string to N .

v Rules for reductions
u To show that B is at least as hard as A,

reduce problems of A to problems of B.
u Only get to “call” B once.
u B gives the answer – you can’t invert it, etc.

CpSc 421 — 31 October 2008 – p.7/14

Language Emptiness
v Let ETM = {M | L(M) = ∅}.

v We can reduce ATM to ETM :
u Create a Turing machine N that on input M#w

u N writes the description for TM M ′:
t M ′ rejects if its input is not equal to w.
t Otherwise, M ′ runs M on input w:

sIf M accepts w so does M ′.
sIf M rejects w so does M ′.
sIf M loops on w so does M ′.

t If M accepts w, then L(M ′) = {w}.
t Otherwise L(M ′) = ∅.

u N runs the machine for ETM on M ′.
t If M ′ ∈ ETM , N accepts.
t Otherwise, N rejects.

u L(N) = ATM .

v This shows that ETM is at least as hard as ATM .

∴ ETM is undecidable.

CpSc 421 — 31 October 2008 – p.8/14

A Note on the Proof
v We just showed that ETM is at least as hard as ATM .

v At each step, we were careful to make sure that the machine that called the
“sub-machine” would do the same thing (accept, reject, or loop) as the
“sub-machine”.

v If we flip accept and reject, then what should we do with loop?

v Sipser avoids this by using reduction to prove undecidability – he shows that no
decider exists for the specified problem. Thus, he doesn’t need to consider looping
behaviours.

v Our argument shows a bit more, we’ve not only shown that ETM is undecidable,
we’ve also shown that it is at least as hard as Turing co-recognizable (but
undecidable).

v In fact, ETM is Turing co-recognizable.

v We cannot reduce a Turing recognizable (but undecidable) language to a Turing

co-recognizable language. If so, we would have shown that all Turing recognizable

languages are Turing co-recognizable, and this would make them Turing decidable.

But, we know that there are Turing recognizable languages that are undecidable.
CpSc 421 — 31 October 2008 – p.9/14

Anatomy of a Reduction Proof
Want to show that A ≺ B.

v Let A be a language in class A. Let w be a string.

v Find a langauge B ∈ B and construct a string w′ s.t. (w ∈ A) ⇔ (w′ ∈ B).

v Typically, this involves a bunch of Turing Machines:
u MB a machine that decides (recognizes, etc.) B.
u Often, A is defined for strings that include TM descriptions. e.g.

A = {M#w | where M is a TM that . . .}

u We define a TM, MA that decides (recognizes, etc.) A by:
t Constructing a new machine, M ′ based on M and possibly w.
t Runs MB on an input that includes a description of M ′.
t MA accepts if MB accepts and MA rejects if MB rejects (and loops if MB

loops).
t NOTE: we never actually run M ′ on anything!

CpSc 421 — 31 October 2008 – p.10/14

Reducing ETM to ATM

v Let M be a Turing machine. To determing if L(M) = ∅:
v Construct a new Turing machine M ′. Here’s what M ′ does:

n = 1;

while(true) {

for(i = 1; i < n; i++) {

w = string(i);

simulate M for i steps on input w;

if(M accepts) accept;

}

}

v For any w, test M ′#w ∈ ATM .
u (M ′#w ∈ ATM) ⇔ (L(M ′) = ∅).
u Thus, we’ve reduced ETM to ATM .

v We’ve shown that ETM is at least as hard as ATM (slide 8),
and that ETM is at most as hard as ATM (this slide).

v
∴ ETM is undecidable and Turing co-recognizable.

CpSc 421 — 31 October 2008 – p.11/14

REGULAR is Undecidable
v Let REGULAR = {M | L(M) is regular}.

v REGULAR is undecidable. On input M#w where M describes a TM and w is
describes an input string for that TM

u . . .

CpSc 421 — 31 October 2008 – p.12/14

Diagrams of Decidability
v Venn Diagrams for the sets of Turing decidable, recognizable, and co-recognizable

languages.

v Describing these with quantifiers.

CpSc 421 — 31 October 2008 – p.13/14

This coming week (and beyond)
v Reading

u Today: Sipser 5.1
u Nov. 3 (Monday): Midterm review.
u Nov. 5 (Wednesday): Midterm 2.

u Nov. 5 (A week from Today): Sipser 5.2

v Homework
u Oct. 31 (Friday): Homework 7 due, Homework 8 goes out.

No late homework accepted for homework 7.

Homework 8 is extra credit.

CpSc 421 — 31 October 2008 – p.14/14

	Reductions
	Reducing Multiplication to Addition
	More Examples
	A Warning
	The Halting Problem (again)
	A Recipe For Reduction
	Language Emptiness
	A Note on the Proof
	Anatomy of a Reduction Proof
	Reducing $etm $ to $overline {atm }$
	$mathit {REGULAR}$ is Undecidable
	Diagrams of Decidability
	This coming week (and beyond)

