TheHalting Problem
for Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

@ The Undecidability of A1y,
® Diagonalizing Turing Machines

@® Turing Recongizable D Turing Decidable

@ Turing Unrecognizable Languages
® How do we know if M is a decider?
® The Halting Problem

@® Turing Unrecognizable Languages

CpSc 421 — 29 October 2008 — p.1/10



Tryl ngto Decide ATM

® Ary = {M#w | Turing machine M accepts string w }
® Ay is Turing recognizable:

We constructed a Turing Machine, U that recognizes A 1, in the October 27
lecture.

® U was not a decider — it would loop on input M #w if M loops on input w.
® Can we make a Turing machine that decides A 1, ?
This machine must halt (either accept or reject) for all possible inputs.

® Assume that E is a TM that decides A 7,.
We'll show that this leads to a contradiction on the next few slides.

CpSc 421 — 29 October 2008 — p.2/10



A7y IsUndecidable

@® A7y = {M+#w | M describes a TM that accepts string w}

@ Let D be a Turing machine that does not have # in its input alphabet. On input w, D
does the following:

@® Appends #w onto its input tape to produce w#w.
@® Runs FE (the decider for A7,s) as a “subroutine”.
® |If £ accepts w#w, D rejects.
® |If E rejects w#w, D accepts.
@ Now, run D with its own description as its input:

® If E says that D accepts when run with D as input,
then D rejects when run with D as input.

® If E says that D rejects when run with D as input,
then D accepts when run with D as input.

@® Either way, we have a contradiction.

® . E cannot exist.
® Thereis no TM that decides A 7y,.
® A, is not Turing decidable.

CpSc 421 — 29 October 2008 — p.3/10



Why isthis Diagonalization?

@ The set of all Turing machines is countable:

® Turing Machines can be described by strings.

® In the October 27 lecture we described TMs using strings over the alphabet
ETM — {0717(7’ 7)}
® Not all strings are valid TM descriptions. Thus, |TM| < |X%.,,| = |N|.

® Forevery k > 3 there is a valid TM with k states. Thus | TM| > |N]|.
® We conclude that |TM | = |N|.

@ The set of all languages is uncountable.
The set of all languages has size 2/>"1 = 2Nl

@ There are more languages than there are Turing machines.

.". There are languages that are neither Turing decidable nor recognizable.

CpSc 421 — 29 October 2008 — p.4/10



Why isthis Diagonalization?

@ The set of all Turing machines is countable:

@ The set of all languages is uncountable.
The set of all languages has size 2" = 2INI. For example, with = = {0,1} we

have:
e 0O 1 00 01 10 11 o000
Lo | R R R R R R R R
L 1 A R R R R R R R
Lo | R A R R R R R R
Ls| A A R R R R R R
Ly, R R A R R R R R

@ There are more languages than there are Turing machines.

.". There are languages that are neither Turing decidable nor recognizable.

CpSc 421 — 29 October 2008 — p.4/10



Constructing an Undecidable L anguag

® Consider the matrix where entry (i, j) is 1 iff Turing machine i
accepts the string that encodes Turing machine j:

Moy My My ... Mz Mug Mg
My o o0 00 ... o0 o0 o0
M, A A A ... A A A
Mo R R R ... R R R
M1 A oo R R R A
Mg R R R 00 00 00
A o R A A

® Let Lp be the language
{M; | Turing machine M; does not accept input M; }:

CpSc 421 — 29 October 2008 — p.5/10



Constructing an Undecidable L anguag

® Consider the matrix where entry (i, j) is 1 iff Turing machine i
accepts the string that encodes Turing machine j:

Mo My My ... Myz Mg Mg
My R R R ... R R R
M, A A A A A A
M, R R R R R R
M1 A oo R R R A
Mg R R R o0 00 00
A o R A A

® Let Lp be the language
{ M; | Turing machine M; does not accept input M; }:
Moy My My ... Muz Mg Mg
T 1 DA 1 1 0]

- p.5/10



Constructing an Undecidable L anguag

® Consider the matrix where entry (i, j) is 1 iff Turing machine i
accepts the string that encodes Turing machine j:

® Let Lp be the language
{M; | Turing machine M; does not accept input M; }:

My My Ms ... Mpyrz Mus Mo
Lp A R A ... A A R

® There is no TM in our list that recognizes Lp —
that’s the diagonalization.

® L isthe language that we tried to construct D to decide.

CpSc 421 — 29 October 2008 — p.5/10



Diagonalization and Halting

@® Ay, is not Turing decidable (slide 3).

@® A, is Turing recognizable (October 27 lecture).

® The set of Turing recognizable languages is strictly larger than the set of Turing
decidable languages.

@® This is because a recognizer is allowed to loop: failure to halt means the input
string is not in the language recognized by the recognizer.
® Lp={M|M#M c Ary} is not Turing recognizable (slide 5).

® This is because the recognizer must halt whenever M loops when run with
input M.

® In fact, we could modify our machines to never use the reject state — they
could just loop to reject.

® Then, recognizing L p would mean determining that the machine will never halt.
® Our argument that L p is not Turing recognizable shows that this variant is not
Turing recognizable.

® - HALT = {M+#w | Turing machine M halts when run with input w} is Turing
recognizable but not Turing decidabile.

® HALT is not even Turing recognizable.
CpSc 421 — 29 October 2008 — p.6/10



Turing Co-Recognizable L anguages

® The class of Turing decidable languages is closed under
complement.

® The class of Turing recognizable languages is not closed under
complement.

® We say that a language, L, is Turing co-recognizable iff the complement of L is
Turing recognizable.

@® For example, the language
LOOPS = {M+#w | Turing machine M loops when run with input w} is Turing

co-recognizable because it is the complement of HALT', a Turing recognizable
language.

CpSc 421 — 29 October 2008 — p.7/10



Relating Recognizability

® If alanguage is Turing recognizable and Turing co-recognizable,
then it is Turing decidable.

Let L be a language that is both Turing recognizable and co-recognizable.

Because L is Turing recognizable, there is a Turing machine, M, that for any
w € L accepts w, and for any w ¢ L rejects or loops.

Because L is Turing co-recognizable, there is a Turing machine, M., _ 1, that for
any w € L rejects w, and for any w € L accepts or loops.

Now, we build a new TM, N that has two tapes, one for M, and one for
M.,_ . Each step of L takes a step for each of M and M.,_. If My,
accepts or M., _, rejects, then N accepts. Likewise, if My, rejects or M., _ 1,
accepts, N rejects. N is guaranteed to halt.

N is a TM that decides L.

.. L is Turing decidable.

CpSc 421 — 29 October 2008 — p.8/10



Why Allow L oopy Machines?

® Couldn’t we just insist that we’ll only consider TM'’s that halt on all
iInputs (i.e. deciders)?
® Problem 1:
® We could do this, and our diagonalization would still work.
® The obvious way to construct a TM for the diagonal (slide 3) produces a TM

that loops. Language L p remains undecidable.

® Problem 2: How do we know if a TM is a decider?

@® This is the question of whether or not a TM halts on all inputs, not just on one,
specific input.

® We say that a TM is total iff it halts on all inputs, and we write

TOTAL = {M | M isaTM that halts on all inputs }

® The language TOTAL is neither Turing recognizable nor co-recognizable.

® Thus, deciding whether or not a TM is a decider is even harder than the halting
problem.

CpSc 421 — 29 October 2008 — p.9/10



Thiscoming week (and beyond)

® Reading
® Today: Sipser, 4.1
® Oct. 29 (Today): Sipser, 4.2
® Oct. 31 (Friday): Sipser, 5.1
® Nov. 3 (Monday): Midterm review.

® Nov. 5 (A week from Today): Midterm 2.

® Homework

® Oct. 31 (Friday): Homework 7 due, Homework 8 goes out.
No late homework accepted for homework 7.

Homework 8 is extra credit.

CpSc 421 — 29 October 2008 — p.10/10



Undecidability FAQ

@® Where did E come from?

® The proof is by contradiction. To prove that A 1, is undecidable, we assume
the opposite, namely that A, is decidable, and show that this leads to a
contradiction. This contradiction shows that one of our assumptions must have
been false. In particular, it shows that our assumption that A 7, is not

undecidable (i.e. that it is decidable) is false. From that, we conclude that A 7,
is undesidable.

® You can think of this as a “game with an adversary.”
® You claim that A, is Turing undecidable.
® | (the adversary) claims that A 1, is Turing decidable.
@ You go to the definition of “Turing decidable:”
A language is Turing decidable iff there exists a TM that decides it. A
TM, M, decides a language A iff for every input string w:
e if w € Athen M accepts w;
eifw ¢ A, M rejects w;
e there is no w for which M loops.
Based on this definition, you ask me to show you a TM that decides A 7j,.

@® Continued on the next slide.

CpSc 421 — 29 October 2008 — p.11/10



Undecidability FAQ (cont.)

@® Where did E come from?
® You can think of this as a “game with an adversary.”

You claim that A 1, is Turing undecidable.
| (the adversary) claims that A7, is Turing decidable.
You ask me to show you a TM that decides A 7),.
| give you the description of some TM, E.
This is where E comes from: | (the adversary) am obligated to produce an
E for you if A1, is indeed Turing decidable.
Based on E, you construct a new TM, D such that
e D accepts w if E rejects w#Hw;
e D rejects w if ¥ accepts w#Hw.
Because E ' is a decider, E never loops. Thus, D never loops as well. See
slide 3 for more details on how to construct D.
Now, you propose running D with the string that describes D as its input.
(continued on the next slide).

CpSc 421 — 29 October 2008 — p.12/10



Undecidability FAQ (cont.)

@® Where did E come from?

@® You can think of this as a “game with an adversary.”
o ...
® Now, you propose running D with the string that describes D as its input.

e D constructs the string D# D and hands it to E.

e From the definition of A7y, E accepts D#D iff D accepts when run
with its own description as its input. If fact, we are running D with its own
description as its input.

e If £ accepts then D rejects.

This means that F said that D accepts when run with its own description
as its input, and D in fact rejected when run with its own description as
its input.

e If E rejects then D accepts.

This means that E said that D rejects when run with its own description
as its input, and D in fact accepted when run with its own description as
its input.

e Either way, E' is wrong. Thus, E is not the decider for A1, that | (the
adversary) claimed it is.

® This shows that there is no TM that decides A 1;,. In other words, A1)/ 1S
not Turing decidable.

CpSc 421 — 29 October 2008 — p.13/10



Undecidability FAQ (cont.)

@® Where did E come from?
® Game with an adversary (summary):

You claim that A 1, is Turing undecidable.
| (the adversary) claims that A7y, is Turing decidable.
You ask me to show you a TM that decides A 7),.
| give you the description of some TM, E.
Based on E, you construct a new TM, D such that accepts w iff E rejects
wHw.
Now, you propose running D with the string that describes D as its input.
e D constructs the string D# D and hands it to E.
e If E' accepts then D rejects and thereby contradicts E’s decision.
e If E' rejects then D accepts and thereby contradicts E’s decision.
e Either way, E is wrong.
This shows that there is no TM that decides A 1;,. In other words, A7)/ 1S
not Turing decidable.

CpSc 421 — 29 October 2008 — p.14/10



Undecidability FAQ: does £ loop?

@ Can we conclude that E loops when run input D#D?

® This may seem reasonable, this is what machine U from the October 27 slides
would do.

@® But that’s not the only way that E can fail.
® For example, we could keep track of all configurations that we’ve seen so far
and detect looping if a configuration is repeated.
® We could apply more sophisticated tests as well, but
® What if one of these tests is wrong?

® F couldreportthat TM M accepts string w when M in fact loops on input w.

® How would you know that E was wrong?

@ You could try running M with input w, but if after a while you came back and
told me that it seems to be looping even though E says it should accept, |
can reply that you just haven'’t run it for long enough yet.

® How can you determine that you've run M long enough? —

How can you decide that E' is wrong?
® In general, you can't.

® See the next slide for a bit more.

CpSc 421 — 29 October 2008 — p.15/10



Undecidability FAQ (cont.)

@ Can we conclude that E loops when run input D#D?

® It was Penrose’s mistake in The Emporer’s New Mind.
® Penrose assumed that because E would be wrong if it accepted or if it
rejected, then E must loop when run with D# D as described above.
® BUT, E is wrong if it loops.

E is supposed to be a decider.

If | (in the adversary argument described above) give you a TM that loops
for some inputs and claim that it's a decider, then I've failed to hold up my
end of the bargain.

If £ is supposed to be a decider and it loops,
then it is just as wrong as it is if it incorrectly accepts or rejects.

® When Penrose concluded that E loops, he inserted a contradiction into his
argument because he had previously assumed that £ was a decider.

e Given that Penrose was arguing from inconsistent assumption, he could
conclude anything.

e Penrose has the excuse that he’s a brilliant physicist who happens to be
clueless about computer science.

e You are a computer science student and don’t have Penrose’s excuse.
Read this FAQ and avoid those mistakes — you wouldn’t want to
embarrass yourself at a party this weekend making silly claims about

decidability results. CpSc 421 — 29 October 2008 — p.16/10



	Trying to Decide $atm $
	$atm $ Is Undecidable
	Why is this Diagonalization?
	Constructing an Undecidable Language
	Diagonalization and Halting
	Turing Co-Recognizable Languages
	Relating Recognizability
	Why Allow Loopy Machines?
	This coming week (and beyond)
	Undecidability FAQ
	Undecidability FAQ (cont.)
	Undecidability FAQ (cont.)
	Undecidability FAQ (cont.)
	Undecidability FAQ: does $E$ loop?
	Undecidability FAQ (cont.)

