The Halting Problem for Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

The Undecidability of A_{TM}

- Diagonalizing Turing Machines
- Turing Recongizable \supset Turing Decidable
- Turing Unrecognizable Languages
 - How do we know if M is a decider?
 - The Halting Problem
 - Turing Unrecognizable Languages

Trying to Decide A_{TM}

- $A_{TM} = \{M \# w \mid \text{Turing machine } M \text{ accepts string } w\}$
 - A_{TM} is Turing recognizable: We constructed a Turing Machine, U that recognizes A_{TM} in the October 27 lecture.
 - U was not a decider it would loop on input M # w if M loops on input w.
 - Can we make a Turing machine that decides A_{TM} ?

This machine must halt (either accept or reject) for all possible inputs.

• Assume that E is a TM that decides A_{TM} .

We'll show that this leads to a contradiction on the next few slides.

A_{TM} Is Undecidable

- $A_{TM} = \{M \# w \mid M \text{ describes a TM that accepts string } w\}$
- Let D be a Turing machine that does not have # in its input alphabet. On input w, D does the following:
 - Appends #w onto its input tape to produce w #w.
 - Runs E (the decider for A_{TM}) as a "subroutine".
 - If E accepts w # w, D rejects.
 - If E rejects w # w, D accepts.
- Now, run D with its own description as its input:
 - If E says that D accepts when run with D as input, then D rejects when run with D as input.
 - If E says that D rejects when run with D as input, then D accepts when run with D as input.
 - Either way, we have a contradiction.
 - $\therefore E$ cannot exist.
 - There is no TM that decides A_{TM} .
 - A_{TM} is not Turing decidable.

Why is this Diagonalization?

- The set of all Turing machines is countable:
 - Turing Machines can be described by strings.
 - In the October 27 lecture we described TMs using strings over the alphabet $\Sigma_{TM} = \{0, 1, (, , ,)\}.$
 - Not all strings are valid TM descriptions. Thus, $|TM| \leq |\Sigma^*_{TM}| = |\mathbb{N}|$.
 - For every $k \ge 3$ there is a valid TM with k states. Thus $|TM| \ge |\mathbb{N}|$.
 - We conclude that $|TM| = |\mathbb{N}|$.
- The set of all languages is uncountable.

The set of all languages has size $2^{|\Sigma^*|} = 2^{|\mathbb{N}|}$.

- There are more languages than there are Turing machines.
 - ... There are languages that are neither Turing decidable nor recognizable.

Why is this Diagonalization?

- The set of all Turing machines is countable:
- The set of all languages is uncountable. The set of all languages has size $2^{|\Sigma^*|} = 2^{|\mathbb{N}|}$. For example, with $\Sigma = \{0, 1\}$ we have:

	ϵ	0	1	00	01	10	11	000	•••
L_0	R	R	R	R	R	R	R	R	
L_1	A	R	R	R	R	R	R	R	•••
L_2	R	A	R	R	R	R	R	R	
L_3	A	A	R	R	R	R	R	R	
L_4	R	R	A	R	R	R	R	R	•••
•		÷	÷	÷	÷	÷	÷	÷	·

There are more languages than there are Turing machines.

... There are languages that are neither Turing decidable nor recognizable.

Constructing an Undecidable Languag

• Consider the matrix where entry (i, j) is 1 iff Turing machine *i* accepts the string that encodes Turing machine *j*:

	M_0	M_1	M_2	• • •	M_{117}	M_{118}	M_{119}	•••
M_0	∞	∞	∞	•••	∞	∞	∞	•••
M_1	A	A	A	•••	A	A	A	• • •
M_2	R	R	R	• • •	R	R	R	• • •
÷	÷	÷	÷	÷	÷	÷	÷	
M_{117}	A	∞	R	• • •	R	R	A	• • •
M_{118}	R	R	R	• • •	∞	∞	∞	• • •
M_{119}	R	A	∞	• • •	R	A	A	• • •
÷		•		•	÷	÷	÷	•••

• Let L_D be the language

 $\{M_i \mid \text{Turing machine } M_i \text{ does not accept input } M_i\}$:

Constructing an Undecidable Language

Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j:

	M_0	M_1	M_2	•••	M_{117}	M_{118}	M_{119}	•••
M_0	\underline{R}	R	R	•••	R	R	R	•••
M_1	A	\underline{A}	A	•••	A	A	A	•••
M_2	R	R	\underline{R}	•••	R	R	R	•••
÷	÷	÷	÷	÷	÷	÷	÷	•••
M_{117}	A	∞	R	•••	\underline{R}	R	A	•••
M_{118}	R	R	R	•••	∞	$\underline{\infty}$	∞	•••
M_{119}	R	A	∞	•••	R	A	<u>A</u>	•••
÷	:	:	÷	÷	÷	÷	÷	•••

• Let L_D be the language

 $\{M_i \mid \text{Turing machine } M_i \text{ does not accept input } M_i\}$:

 $M_0 \quad M_1 \quad M_2 \quad \dots \quad M_{117} \quad M_{118} \quad M_{119} \quad \dots$

Constructing an Undecidable Language

- Consider the matrix where entry (i, j) is 1 iff Turing machine i accepts the string that encodes Turing machine j:
- Let L_D be the language $\{M_i \mid \text{Turing machine } M_i \text{ does not accept input } M_i\}$: $M_0 \quad M_1 \quad M_2 \quad \dots \quad M_{117} \quad M_{118} \quad M_{119} \quad \dots$ $L_D \quad A \quad R \quad A \quad \dots \quad A \quad A \quad R \quad \dots$
- There is no TM in our list that recognizes L_D that's the diagonalization.
- L_D is the language that we tried to construct D to decide.

Diagonalization and Halting

- A_{TM} is not Turing decidable (slide 3).
- A_{TM} is Turing recognizable (October 27 lecture).
 - The set of Turing recognizable languages is strictly larger than the set of Turing decidable languages.
 - This is because a recognizer is allowed to loop: failure to halt means the input string is not in the language recognized by the recognizer.
- $L_D = \{M \mid M \# M \in A_{TM}\}$ is not Turing recognizable (slide 5).
 - This is because the recognizer must halt whenever M loops when run with input M.
 - In fact, we could modify our machines to never use the *reject* state they could just loop to reject.
 - Then, recognizing L_D would mean determining that the machine will never halt.
 - Our argument that L_D is not Turing recognizable shows that this variant is not Turing recognizable.
- \therefore $HALT = \{M \# w \mid \text{Turing machine } M \text{ halts when run with input } w\}$ is Turing recognizable but not Turing decidable.
 - \overline{HALT} is not even Turing recognizable.

Turing Co-Recognizable Languages

- The class of Turing decidable languages is closed under complement.
- The class of Turing recognizable languages is not closed under complement.
 - We say that a language, L, is Turing co-recognizable iff the complement of L is Turing recognizable.
 - For example, the language

 $LOOPS = \{M \# w \mid \text{Turing machine } M \text{ loops when run with input } w\}$ is Turing co-recognizable because it is the complement of HALT, a Turing recognizable language.

Relating Recognizability

- If a language is Turing recognizable and Turing co-recognizable, then it is Turing decidable.
 - Let L be a language that is both Turing recognizable and co-recognizable.
 - Because L is Turing recognizable, there is a Turing machine, M_L that for any $w \in L$ accepts w, and for any $w \notin L$ rejects or loops.
 - Because L is Turing co-recognizable, there is a Turing machine, M_{co-L} that for any $w \notin L$ rejects w, and for any $w \in L$ accepts or loops.
 - Now, we build a new TM, N that has two tapes, one for M_L and one for M_{co-L} . Each step of L takes a step for each of M_L and M_{co-L} . If M_L accepts or M_{co-L} rejects, then N accepts. Likewise, if M_L rejects or M_{co-L} accepts, N rejects. N is guaranteed to halt.
 - N is a TM that decides L.
 - $\therefore L$ is Turing decidable.

Why Allow Loopy Machines?

- Couldn't we just insist that we'll only consider TM's that halt on all inputs (i.e. deciders)?
- Problem 1:
 - We could do this, and our diagonalization would still work.
 - The obvious way to construct a TM for the diagonal (slide 3) produces a TM that loops. Language L_D remains undecidable.
- Problem 2: How do we know if a TM is a decider?
 - This is the question of whether or not a TM halts on all inputs, not just on one, specific input.
 - We say that a TM is total iff it halts on all inputs, and we write

 $TOTAL = \{M \mid M \text{ is a TM that halts on all inputs}\}$

- The language *TOTAL* is neither Turing recognizable nor co-recognizable.
- Thus, deciding whether or not a TM is a decider is even harder than the halting problem.

This coming week (and beyond)

Reading

- Today: Sipser, 4.1
- Oct. 29 (Today): Sipser, 4.2
- Oct. 31 (Friday): Sipser, 5.1
- Nov. 3 (Monday): Midterm review.
- Nov. 5 (A week from Today): Midterm 2.

Homework

Oct. 31 (Friday): Homework 7 due, Homework 8 goes out.
 No late homework accepted for homework 7.

Homework 8 is extra credit.

Undecidability FAQ

Where did *E* come from?

- The proof is by contradiction. To prove that A_{TM} is undecidable, we assume the opposite, namely that A_{TM} is decidable, and show that this leads to a contradiction. This contradiction shows that one of our assumptions must have been false. In particular, it shows that our assumption that A_{TM} is not undecidable (i.e. that it is decidable) is false. From that, we conclude that A_{TM} is undesidable.
- You can think of this as a "game with an adversary."
 - You claim that A_{TM} is Turing undecidable.
 - I (the adversary) claims that A_{TM} is Turing decidable.
 - You go to the definition of "Turing decidable:"
 - A language is Turing decidable iff there exists a TM that decides it. A TM, M, decides a language A iff for every input string w:
 - if $w \in A$ then M accepts w;
 - if $w \notin A$, M rejects w;
 - there is no w for which M loops.

Based on this definition, you ask me to show you a TM that decides A_{TM} .

Continued on the next slide.

- Where did *E* come from?
 - You can think of this as a "game with an adversary."
 - You claim that A_{TM} is Turing undecidable.
 - I (the adversary) claims that A_{TM} is Turing decidable.
 - You ask me to show you a TM that decides A_{TM} .
 - I give you the description of some TM, E.
 This is where E comes from: I (the adversary) am obligated to produce an E for you if A_{TM} is indeed Turing decidable.
 - Based on *E*, you construct a new TM, *D* such that
 - D accepts w if E rejects w # w;
 - D rejects w if E accepts w # w.

Because E is a decider, E never loops. Thus, D never loops as well. See slide 3 for more details on how to construct D.

- Now, you propose running D with the string that describes D as its input.
- (continued on the next slide).

- Where did *E* come from?
 - You can think of this as a "game with an adversary."
 - ...
 - Now, you propose running D with the string that describes D as its input.
 - D constructs the string D # D and hands it to E.
 - From the definition of A_{TM} , E accepts D#D iff D accepts when run with its own description as its input. If fact, we are running D with its own description as its input.
 - If E accepts then D rejects.

This means that E said that D accepts when run with its own description as its input, and D in fact rejected when run with its own description as its input.

- If E rejects then D accepts.
 - This means that E said that D rejects when run with its own description as its input, and D in fact accepted when run with its own description as its input.
- Either way, E is wrong. Thus, E is not the decider for A_{TM} that I (the adversary) claimed it is.
- This shows that there is no TM that decides A_{TM} . In other words, A_{TM} is not Turing decidable.

- Where did *E* come from?
 - Game with an adversary (summary):
 - You claim that A_{TM} is Turing undecidable.
 - I (the adversary) claims that A_{TM} is Turing decidable.
 - You ask me to show you a TM that decides A_{TM} .
 - I give you the description of some TM, E.
 - Based on E, you construct a new TM, D such that accepts w iff E rejects w # w.
 - Now, you propose running D with the string that describes D as its input.
 - D constructs the string D # D and hands it to E.
 - If E accepts then D rejects and thereby contradicts E's decision.
 - If E rejects then D accepts and thereby contradicts E's decision.
 - Either way, E is wrong.
 - This shows that there is no TM that decides A_{TM} . In other words, A_{TM} is not Turing decidable.

Undecidability FAQ: does *E* **loop?**

- Can we conclude that E loops when run input D # D?
 - This may seem reasonable, this is what machine U from the October 27 slides would do.
 - But that's not the only way that E can fail.
 - For example, we could keep track of all configurations that we've seen so far and detect looping if a configuration is repeated.
 - We could apply more sophisticated tests as well, but
 - What if one of these tests is wrong?
 - E could report that TM M accepts string w when M in fact loops on input w.
 - How would you know that E was wrong?
 - You could try running M with input w, but if after a while you came back and told me that it seems to be looping even though E says it should accept, I can reply that you just haven't run it for long enough yet.
 - How can you determine that you've run M long enough? –
 How can you decide that E is wrong?
 - In general, you can't.
 - See the next slide for a bit more.

Can we conclude that E loops when run input D#D?

- It was Penrose's mistake in The Emporer's New Mind.
 - Penrose assumed that because E would be wrong if it accepted or if it rejected, then E must loop when run with D#D as described above.
 - BUT, *E* is wrong if it loops.
 - E is supposed to be a decider.
 - If I (in the adversary argument described above) give you a TM that loops for some inputs and claim that it's a decider, then I've failed to hold up my end of the bargain.
 - If E is supposed to be a decider and it loops,

then it is just as wrong as it is if it incorrectly accepts or rejects.

- When Penrose concluded that E loops, he inserted a contradiction into his argument because he had previously assumed that E was a decider.
 - Given that Penrose was arguing from inconsistent assumption, he could conclude anything.
 - Penrose has the excuse that he's a brilliant physicist who happens to be clueless about computer science.
 - You are a computer science student and don't have Penrose's excuse. Read this FAQ and avoid those mistakes – you wouldn't want to embarrass yourself at a party this weekend making silly claims about decidability results.