
The Halting Problem
for Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

v The Undecidability of ATM

u Diagonalizing Turing Machines
u Turing Recongizable ⊃ Turing Decidable

v Turing Unrecognizable Languages
u How do we know if M is a decider?
u The Halting Problem
u Turing Unrecognizable Languages

CpSc 421 — 29 October 2008 – p.1/10

Trying to Decide ATM

v ATM = {M#w | Turing machine M accepts string w}
u ATM is Turing recognizable:

We constructed a Turing Machine, U that recognizes ATM in the October 27
lecture.

u U was not a decider – it would loop on input M#w if M loops on input w.
u Can we make a Turing machine that decides ATM ?

This machine must halt (either accept or reject) for all possible inputs.

v Assume that E is a TM that decides ATM .
We’ll show that this leads to a contradiction on the next few slides.

CpSc 421 — 29 October 2008 – p.2/10

ATM Is Undecidable
v ATM = {M#w | M describes a TM that accepts string w}

v Let D be a Turing machine that does not have # in its input alphabet. On input w, D

does the following:
u Appends #w onto its input tape to produce w#w.
u Runs E (the decider for ATM) as a “subroutine”.

t If E accepts w#w, D rejects.
t If E rejects w#w, D accepts.

v Now, run D with its own description as its input:
u If E says that D accepts when run with D as input,

then D rejects when run with D as input.
u If E says that D rejects when run with D as input,

then D accepts when run with D as input.
u Either way, we have a contradiction.

v
∴ E cannot exist.

u There is no TM that decides ATM .
u ATM is not Turing decidable.

CpSc 421 — 29 October 2008 – p.3/10

Why is this Diagonalization?
v The set of all Turing machines is countable:

u Turing Machines can be described by strings.
t In the October 27 lecture we described TMs using strings over the alphabet

ΣTM = {0,1,(,,,)}.
t Not all strings are valid TM descriptions. Thus, |TM | ≤ |Σ∗

TM
| = |N|.

u For every k ≥ 3 there is a valid TM with k states. Thus |TM | ≥ |N|.
u We conclude that |TM | = |N|.

v The set of all languages is uncountable.

The set of all languages has size 2|Σ
∗| = 2|N|.

v There are more languages than there are Turing machines.

∴ There are languages that are neither Turing decidable nor recognizable.

CpSc 421 — 29 October 2008 – p.4/10

Why is this Diagonalization?
v The set of all Turing machines is countable:

v The set of all languages is uncountable.

The set of all languages has size 2|Σ
∗| = 2|N|. For example, with Σ = {0,1} we

have:
ǫ 0 1 00 01 10 11 000 . . .

L0 R R R R R R R R . . .

L1 A R R R R R R R . . .

L2 R A R R R R R R . . .

L3 A A R R R R R R . . .

L4 R R A R R R R R . . .

...
...

...
...

...
...

...
...

...
. . .

v There are more languages than there are Turing machines.

∴ There are languages that are neither Turing decidable nor recognizable.

CpSc 421 — 29 October 2008 – p.4/10

Constructing an Undecidable Language
v Consider the matrix where entry (i, j) is 1 iff Turing machine i

accepts the string that encodes Turing machine j:

M0 M1 M2 . . . M117 M118 M119 . . .

M0 ∞ ∞ ∞ . . . ∞ ∞ ∞ . . .

M1 A A A . . . A A A . . .

M2 R R R . . . R R R . . .

...
...

...
...

...
...

...
...

M117 A ∞ R . . . R R A . . .

M118 R R R . . . ∞ ∞ ∞ . . .

M119 R A ∞ . . . R A A . . .

...
...

...
...

...
...

...
...

. . .

v Let LD be the language
{Mi | Turing machine Mi does not accept input Mi}:

CpSc 421 — 29 October 2008 – p.5/10

Constructing an Undecidable Language
v Consider the matrix where entry (i, j) is 1 iff Turing machine i

accepts the string that encodes Turing machine j:

M0 M1 M2 . . . M117 M118 M119 . . .

M0 R R R . . . R R R . . .

M1 A A A . . . A A A . . .

M2 R R R . . . R R R . . .

...
...

...
...

...
...

...
...

. . .

M117 A ∞ R . . . R R A . . .

M118 R R R . . . ∞ ∞ ∞ . . .

M119 R A ∞ . . . R A A . . .

...
...

...
...

...
...

...
...

. . .

v Let LD be the language
{Mi | Turing machine Mi does not accept input Mi}:

M0 M1 M2 . . . M117 M118 M119 . . .

LD A R A . . . A A R . . .
– p.5/10

Constructing an Undecidable Language
v Consider the matrix where entry (i, j) is 1 iff Turing machine i

accepts the string that encodes Turing machine j:

v Let LD be the language
{Mi | Turing machine Mi does not accept input Mi}:

M0 M1 M2 . . . M117 M118 M119 . . .

LD A R A . . . A A R . . .

v There is no TM in our list that recognizes LD –
that’s the diagonalization.

v LD is the language that we tried to construct D to decide.

CpSc 421 — 29 October 2008 – p.5/10

Diagonalization and Halting
v ATM is not Turing decidable (slide 3).

v ATM is Turing recognizable (October 27 lecture).
u The set of Turing recognizable languages is strictly larger than the set of Turing

decidable languages.
u This is because a recognizer is allowed to loop: failure to halt means the input

string is not in the language recognized by the recognizer.

v LD = {M | M#M ∈ ATM } is not Turing recognizable (slide 5).
u This is because the recognizer must halt whenever M loops when run with

input M .
u In fact, we could modify our machines to never use the reject state — they

could just loop to reject.
u Then, recognizing LD would mean determining that the machine will never halt.
u Our argument that LD is not Turing recognizable shows that this variant is not

Turing recognizable.

v
∴ HALT = {M#w | Turing machine M halts when run with input w} is Turing
recognizable but not Turing decidable.

u HALT is not even Turing recognizable.
CpSc 421 — 29 October 2008 – p.6/10

Turing Co-Recognizable Languages
v The class of Turing decidable languages is closed under

complement.

v The class of Turing recognizable languages is not closed under
complement.

u We say that a language, L, is Turing co-recognizable iff the complement of L is
Turing recognizable.

u For example, the language

LOOPS = {M#w | Turing machine M loops when run with input w} is Turing

co-recognizable because it is the complement of HALT , a Turing recognizable

language.

CpSc 421 — 29 October 2008 – p.7/10

Relating Recognizability
v If a language is Turing recognizable and Turing co-recognizable,

then it is Turing decidable.
u Let L be a language that is both Turing recognizable and co-recognizable.
u Because L is Turing recognizable, there is a Turing machine, ML that for any

w ∈ L accepts w, and for any w 6∈ L rejects or loops.
u Because L is Turing co-recognizable, there is a Turing machine, Mco−L that for

any w 6∈ L rejects w, and for any w ∈ L accepts or loops.
u Now, we build a new TM, N that has two tapes, one for ML and one for

Mco−L. Each step of L takes a step for each of ML and Mco−L. If ML

accepts or Mco−L rejects, then N accepts. Likewise, if ML rejects or Mco−L

accepts, N rejects. N is guaranteed to halt.
u N is a TM that decides L.

u
∴ L is Turing decidable.

CpSc 421 — 29 October 2008 – p.8/10

Why Allow Loopy Machines?
v Couldn’t we just insist that we’ll only consider TM’s that halt on all

inputs (i.e. deciders)?

v Problem 1:
u We could do this, and our diagonalization would still work.

u The obvious way to construct a TM for the diagonal (slide 3) produces a TM

that loops. Language LD remains undecidable.

v Problem 2: How do we know if a TM is a decider?
u This is the question of whether or not a TM halts on all inputs, not just on one,

specific input.
u We say that a TM is total iff it halts on all inputs, and we write

TOTAL = {M | M is a TM that halts on all inputs}

u The language TOTAL is neither Turing recognizable nor co-recognizable.

u Thus, deciding whether or not a TM is a decider is even harder than the halting

problem.

CpSc 421 — 29 October 2008 – p.9/10

This coming week (and beyond)
v Reading

u Today: Sipser, 4.1
u Oct. 29 (Today): Sipser, 4.2
u Oct. 31 (Friday): Sipser, 5.1
u Nov. 3 (Monday): Midterm review.

u Nov. 5 (A week from Today): Midterm 2.

v Homework
u Oct. 31 (Friday): Homework 7 due, Homework 8 goes out.

No late homework accepted for homework 7.

Homework 8 is extra credit.

CpSc 421 — 29 October 2008 – p.10/10

Undecidability FAQ
v Where did E come from?

u The proof is by contradiction. To prove that ATM is undecidable, we assume
the opposite, namely that ATM is decidable, and show that this leads to a
contradiction. This contradiction shows that one of our assumptions must have
been false. In particular, it shows that our assumption that ATM is not
undecidable (i.e. that it is decidable) is false. From that, we conclude that ATM

is undesidable.
u You can think of this as a “game with an adversary.”

t You claim that ATM is Turing undecidable.
t I (the adversary) claims that ATM is Turing decidable.
t You go to the definition of “Turing decidable:”

A language is Turing decidable iff there exists a TM that decides it. A
TM, M , decides a language A iff for every input string w:

sif w ∈ A then M accepts w;
sif w 6∈ A, M rejects w;
sthere is no w for which M loops.

Based on this definition, you ask me to show you a TM that decides ATM .
u Continued on the next slide.

CpSc 421 — 29 October 2008 – p.11/10

Undecidability FAQ (cont.)
v Where did E come from?

u You can think of this as a “game with an adversary.”
t You claim that ATM is Turing undecidable.
t I (the adversary) claims that ATM is Turing decidable.
t You ask me to show you a TM that decides ATM .
t I give you the description of some TM, E.

This is where E comes from: I (the adversary) am obligated to produce an
E for you if ATM is indeed Turing decidable.

t Based on E, you construct a new TM, D such that
sD accepts w if E rejects w#w;
sD rejects w if E accepts w#w.

Because E is a decider, E never loops. Thus, D never loops as well. See
slide 3 for more details on how to construct D.

t Now, you propose running D with the string that describes D as its input.
t (continued on the next slide).

CpSc 421 — 29 October 2008 – p.12/10

Undecidability FAQ (cont.)
v Where did E come from?

u You can think of this as a “game with an adversary.”
t . . .
t Now, you propose running D with the string that describes D as its input.

sD constructs the string D#D and hands it to E.
sFrom the definition of ATM , E accepts D#D iff D accepts when run
with its own description as its input. If fact, we are running D with its own
description as its input.

sIf E accepts then D rejects.
This means that E said that D accepts when run with its own description
as its input, and D in fact rejected when run with its own description as
its input.

sIf E rejects then D accepts.
This means that E said that D rejects when run with its own description
as its input, and D in fact accepted when run with its own description as
its input.

sEither way, E is wrong. Thus, E is not the decider for ATM that I (the
adversary) claimed it is.

t This shows that there is no TM that decides ATM . In other words, ATM is
not Turing decidable.

CpSc 421 — 29 October 2008 – p.13/10

Undecidability FAQ (cont.)
v Where did E come from?

u Game with an adversary (summary):
t You claim that ATM is Turing undecidable.
t I (the adversary) claims that ATM is Turing decidable.
t You ask me to show you a TM that decides ATM .
t I give you the description of some TM, E.
t Based on E, you construct a new TM, D such that accepts w iff E rejects

w#w.
t Now, you propose running D with the string that describes D as its input.

sD constructs the string D#D and hands it to E.
sIf E accepts then D rejects and thereby contradicts E’s decision.
sIf E rejects then D accepts and thereby contradicts E’s decision.
sEither way, E is wrong.

t This shows that there is no TM that decides ATM . In other words, ATM is
not Turing decidable.

CpSc 421 — 29 October 2008 – p.14/10

Undecidability FAQ: does E loop?
v Can we conclude that E loops when run input D#D?

u This may seem reasonable, this is what machine U from the October 27 slides
would do.

u But that’s not the only way that E can fail.
t For example, we could keep track of all configurations that we’ve seen so far

and detect looping if a configuration is repeated.
t We could apply more sophisticated tests as well, but
t What if one of these tests is wrong?

u E could report that TM M accepts string w when M in fact loops on input w.
t How would you know that E was wrong?
t You could try running M with input w, but if after a while you came back and

told me that it seems to be looping even though E says it should accept, I
can reply that you just haven’t run it for long enough yet.

t How can you determine that you’ve run M long enough? –
How can you decide that E is wrong?

t In general, you can’t.
u See the next slide for a bit more.

CpSc 421 — 29 October 2008 – p.15/10

Undecidability FAQ (cont.)
v Can we conclude that E loops when run input D#D?

u It was Penrose’s mistake in The Emporer’s New Mind.
t Penrose assumed that because E would be wrong if it accepted or if it

rejected, then E must loop when run with D#D as described above.
t BUT, E is wrong if it loops.

E is supposed to be a decider.
If I (in the adversary argument described above) give you a TM that loops

for some inputs and claim that it’s a decider, then I’ve failed to hold up my
end of the bargain.

If E is supposed to be a decider and it loops,
then it is just as wrong as it is if it incorrectly accepts or rejects.

t When Penrose concluded that E loops, he inserted a contradiction into his
argument because he had previously assumed that E was a decider.

sGiven that Penrose was arguing from inconsistent assumption, he could
conclude anything.

sPenrose has the excuse that he’s a brilliant physicist who happens to be
clueless about computer science.

sYou are a computer science student and don’t have Penrose’s excuse.
Read this FAQ and avoid those mistakes – you wouldn’t want to
embarrass yourself at a party this weekend making silly claims about
decidability results. CpSc 421 — 29 October 2008 – p.16/10

	Trying to Decide $atm $
	$atm $ Is Undecidable
	Why is this Diagonalization?
	Constructing an Undecidable Language
	Diagonalization and Halting
	Turing Co-Recognizable Languages
	Relating Recognizability
	Why Allow Loopy Machines?
	This coming week (and beyond)
	Undecidability FAQ
	Undecidability FAQ (cont.)
	Undecidability FAQ (cont.)
	Undecidability FAQ (cont.)
	Undecidability FAQ: does E loop?
	Undecidability FAQ (cont.)

