Universal Turing Machines
and Diagonalization

Mark Greenstreet, CpSc 421, Term 1, 2008/09

@ Universal Turing Machines

@ A Turing Machine that can be programmed to simulate any other Turing Machine.

@ Diagonalization
@ A way to show compare the sizes of infinite sets.

@ On Wednesday, we'll use it to give a formal proof that the Halting Problem is
undecidable.

CpSc 421 — 27 October 2008 — p.1/19

Some “Universal” Languages

® Ap = {D#w | D describes a DFA that accepts string w }

@ This is the “universal” language for Regular Languages.

@ We described a Turing Machine for A g in the Oct. 24 lecture.
® Acpp = {G#w | G describes a CFG that generates string w }

@ This is the “universal” language for Context-Free Languages.

@ We described a Turing Machine for Aoy, in the Oct. 24 lecture.

® Apy = {M+#w | M describes a TM that accepts string w }

@ This is the “universal” language for Turing Recognizable Languages.

@ \Wwe’'ll described a Turing Machine for A 15, now.

CpSc 421 — 27 October 2008 — p.2/19

A Universal Turing Machine

Ay = {M#w | M describes a TM that accepts string w }

We’'ll define a Turing Machine, U, that recognizes A r,.
Yu:{0,1,(,,,),#}

I'y: Xu{l],...}

w: The format for the input tape is described on the next slide.

Tapes: We'll use six tapes:

mput = Theinput string, M #w is written here.
dpg = Alist of tuples representing the transition function of M is written here.
qr = The current state of M is written here.
cpy = The current tape symbol of M is written here.
tapep; = The current tape contents for M.
scratch = A scratch tape.

CpSc 421 — 27 October 2008 — p.3/19

Input Tape Format for U

Qul, 10|, ITas|, Sas#tw where

|Q s Binary representation of the number of states of M.

|3 as|: Binary representation of the number of symbols in the input alphabet of M.
IT"ar|: Binary representation of the number of symbols in the tape alphabet of M.

das: A list of tuples for the transition function for M. Each tuple has the form:
(q,¢,q',c,d) where §,,(q,c) = (¢', ', d). In other words, when M is in state ¢ and
reads c, it transitions to state ¢’, writes a ¢’ on the tape and moves one square in
direction d, d € {0, 1}, where 0 denotes a left move and 1 denotes a right move,

qo, accept, and reject. we assume that these special states are represented by 0, 1, and
2 respectively.

w: The input string: binary numbers separated by commas. We assume that each
symbol in I" is encoded using the same number of bits, [log, [T'|].

CpSc 421 — 27 October 2008 — p.4/19

Operation of U (1/2)

Make sure the input is valid:

Check that the tape has the form B*, B*, B*, C*#B*(, B*)* where
B ={0,1}
C =(B*, B*, B*, B*, BY)
Note: This format requirement is a regular language. U can check this by
scanning the tape from left-to-right using its finite states to implement a DFA.

Read |Qp/|, |2 p| and |I"'p| and copy them onto the appropriate tapes.
Copy 4, onto the 6, tape.

Make sure that each tuple, (¢, ¢, q¢’, ', d) for éps has ¢,¢’ € 0...(|@p| — 1),
¢, €0...(|l'p| —1), d, € B. Make sure all combinations for ¢ and ¢ are covered.

Copy w onto the tape,, tape —
write the binary string for M'’s blank if w = e.

Make sure that each symbol for w is in X p.

CpSc 421 — 27 October 2008 — p.5/19

Operation of U (2/2)

® Simulate M.

q «— 0
while(q ¢ {1,2}) {
c < string in B* under head on tape,,.
(1f there is a blank under the head,
wite a comma and the binary string
for M’ s bl ank)
scan dp; tape to find entry for (q,c),
let this be (q,¢,¢,c,d)
copy ¢ onto the ¢ tape.
copy ¢ onto the tape,, tape.
nove head for tape,, according to d.
t
1 f(qg == 1) accept;
el se reject.

CpSc 421 — 27 October 2008 — p.6/19

Observations

® |If M accepts w, then U accepts M #w.

® If M rejects w, then U rejects M #w.
® If M loops on w, then U loops on M #w.
® . U recognizes Ary.

® U is universal:

@ One machine U works with any input M #w.
In other words, U can simulate any Turing machine, M.

@ You can think of the M part of M #w as a program, and the w part as the input
data for the program.

@ U is a programmable machine. Rather than building a new TM for each
problem, we just program U to simulate whatever TM we want.

CpSc 421 — 27 October 2008 — p.7/19

Halting for Turing Machines

® From the previous slide, U loops on input M #w iff M loops on
iInput w.

® We've shown that U recognizes Ay, but it doesn’t decide Ary,.

® Could we build some other machine, U’ that can determine when a
machine M loops on its given input? If so, then U’ would decide
ATM-

@ This would require solving the Halting Problem for Turing Machines.begin

@ We gave an informal argument (see the Oct. 24 slides) that the Halting Problem
for Java™™ programs is undecidable (by Java programs). On Wednesday (Oct.
29), we’ll show that the Halting Problem for Turing Machines is undecidable.

@ First, we'll look at “diagonalization”, the main mathematical concept that we’ll
need for the proof.

CpSc 421 — 27 October 2008 — p.8/19

Which Set is Bigger?

X Y

® Let X and Y be sets.
® Is|X|>|Y]|?
® Solution by counting:

@ Counteach elementin X. Let nx be the number.
@® CounteachelementinY. Let ny be the number.

® Ifnx > ny,then | X| > |Y].

CpSc 421 — 27 October 2008 — p.9/19

Which Set is Bigger?

® Let X and Y be sets.
® Is|X|>|Y]|?
® Solution by counting:

@ Counteach elementin X. Let nx be the number.
@® CounteachelementinY. Let ny be the number.

® Ifnx > ny,then | X| > |Y].

CpSc 421 — 27 October 2008 — p.9/19

Comparing by Pairing

(&

CpSc 421 — 27 October 2008 — p.10/19

Comparing by Pairing

(D)

CpSc 421 — 27 October 2008 — p.10/19

Comparing by Pairing

()

CpSc 421 — 27 October 2008 — p.10/19

Comparing by Pairing

‘e.

CpSc 421 — 27 October 2008 — p.10/19

Comparing by Pairing

(S ED)

CpSc 421 — 27 October 2008 — p.10/19

Comparing by Pairing
X Y

X]>1Y]

® |If there is an onto function, f : X — Y, then | X| > |Y|.

® If there are onto functions f: X — Y andg:Y — X, then
| X| > |Y|and |Y| > |X]|, Thus, | X| =Y.

® Note thatif f : X — Y is one-to-one and onto, then f~! exists and
IS one-to-one, and onto as well. Thus, if there is a one-to-one and
onto function, f : X — Y, then | X| =Y.

@® If there is no onto function g : Y — X, then | X| > |Y]|.

CpSc 421 — 27 October 2008 — p.10/19

Even Integers vs. All Integers

® LetZ be the set of all integers, and E be the set of all even integers.
@ Let f:Z — E be the function f(z) = 2z.
® fisone-to-one: If f(z) = f(y), then 2z = 2y, and = = v.
® fisonto: Ify € E, theny/2 € Z, and f(y/2) = v.
® E=7Z
In English, this says that the number of even integers is equal to the number of

all integers!

® A similar argument shows that |N| = |Z|.

CpSc 421 — 27 October 2008 — p.11/19

Naturals vs. Rationals (1/2)

@ Let Q1 be the set of all strictly-positive rational numbers, and Nt be the
strictly-positive naturals.

@ Letf: QT — NT with f(z) = [z]. Clearly, f is onto, thus |Q+| > |NT| — there are
at least as many positive rational numbers as positive naturals.

z(n)+1—z(n)

@® Letg: Nt - Qt with g(n)

z(n) = L%(m—l—l)J

y(n) = 1(z(n)? —z(n))
z(n) = n-—yn)
For example:

nl 1123456 78| 9|10]11
zn) | 1] 2] 2| 3|3[3[4|4|4] 4| 5
yn)| 0| 1| 1] 3[3|3[6]6]| 6| 610
dm) [1] 1] 2|1 2]3|1|2]3] 4] 1
1 2 1 3 2 1 4 3 2 1 5
gn) |1 [T13 13713135 |1l3135]| 3|71

CpSc 421 — 27 October 2008 — p.12/19

Naturals vs. Rationals (2/2)

® Visualizing g(n).

e PO R R RN R
NI NJW NN N[

L colee it wl=

NSRS

alyp—=

CpSc 421 — 27 October 2008 — p.13/19

Naturals vs. the Reals

® LetV = |0,1) be a half-open, interval of real numbers.

® We'll show that |V| > |N|. Clearly |V| < |R| (in fact, |V | = |R]).
Thus, this will show that |R| > |N|.

® The proof is by contradiction.
® Assume that |R| < |NJ.
@ This means that there exists an onto function g : N — R.

@ On the next slide, we’ll show that this leads to a contradiction. The argument
we use is called a diagonalization argument.

@ ; is not onto, a contradiction. This shows that g cannot exist.

® - |[0,1)| > |N|. which implies |R| > |N].

CpSc 421 — 27 October 2008 — p.14/19

Diagonalization

@ Let digit(x, k) denote the k" digit after the decimal point of . For example,

digit(0.707106,4) = 1, and digit(y/ 5,40) = 8.

@ Lety = i ((digit(g(m), m) mod 8) + 1) x 10~ ™.
m=1

This choice of digits has two handy properties:

@ Forall m, digit(y(m), m) # digit(g(m), m).

@ Alldigits arein {1,2,3,4,5,6,7,8}. This avoids having to deal with problematic
valus for y such as 0.19999999999 . . . which has a limit of 0.2, or
0.999999999999 . . . which has a limit that is not in [0, 1).

® ,c0,1),andVm. y # g(m).

@ is not onto, a contradiction. This shows that g cannot exist.

CpSc 421 — 27 October 2008 — p.15/19

Diagonalization (2/2)

@ Consider the following example of a possible function for g:

g(m)
. 950129285147175
. 231138513574288
. 606842583541787
. 485782468709300
. 891288966148902
. 762096833027395
. 456467465168341
. 018503643248224
. 821407164295253
. 444703364353194

@OO\IQOTrlkwMHOS
O O O O O o o o o o

@ Then y constructed as described on the previous slide will be 0.2378175554
Note that for each m, the mt” digit of y is different than the m*" digit of g(m). Thus,

y IS guaranteed not to appear on the list.
CpSc 421 — 27 October 2008 — p.16/19

|N\ VS. \IR{|

There is an onto mapping from reals to the naturals, e.g. [z]
Thus, |R| > |N| by the “pairing” method described above.

There is no onto mapping from th naturals to the reals. We just
showed this.

Thus, |N| 2 |R|.
We conclude |R| > |N].

Both are infinite, but there are infinity for the number of reals is
inifintely larger than the infinity for the number of naturals (or
integers or rationals).

CpSc 421 — 27 October 2008 — p.17/19

Turing Machines and Languages

® The number of Turing machines is equal to the number of naturals:
Q-1

@ For any natural number, n, we can define a TM with n + 1 states. Thus,
gives us an onto mapping from TMs to the natural numbers.

@® Any TMis described by a string.

@® We can make an onto mapping from naturals to strings by listing all strings in
lexigraphical order.

@ This gives us a onto mapping from integers to TMs.

@® Thus, the number of TMs is the same as the number of naturals.

® The set of languages is the power set of the set of all strings.
@® Foranyset, S, |S| < [27].

@ Thus, there are more languages than there are TMs.

® . there are languages that are not recognized by any TM.

CpSc 421 — 27 October 2008 — p.18/19

This coming week (and beyond)

® Reading

Today: Sipser, 4.1

Oct. 27 (Today): Sipser, 4.2 (midterm cut-off)
Oct. 29 (Wednesday): Sipser, 4.2

Oct. 31 (Friday): Sipser, 5.1

Nov. 3 (A week from Today): Midterm review.

@® Nov. 5 (A week from Wednesday): Midterm 2.

® Homework

@ Oct. 31 (Friday): Homework 7 due, Homework 8 goes out.
No late homework accepted for homework 7.

Homework 8 is extra credit.

CpSc 421 — 27 October 2008 — p.19/19

	Some ``Universal'' Languages
	A Universal Turing Machine
	Input Tape Format for U
	Operation of U (1/2)
	Operation of U (2/2)
	Observations
	Halting for Turing Machines
	Which Set is Bigger?
	Comparing by Pairing
	Even Integers vs. All Integers
	Naturals vs. Rationals (1/2)
	Naturals vs. Rationals (2/2)
	Naturals vs. the Reals
	Diagonalization
	Diagonalization (2/2)
	$|mathbb {N}|$ vs. $|mathbb {R}|$
	Turing Machines and Languages
	This coming week (and beyond)

