Decidability

Mark Greenstreet, CpSc 421, Term 1, 2008/09

Some Relevant Hilbert Problems
 Is mathematics complete?
 Is mathematics consistent?
 Is mathematics decidable?
 Decision Problems for Regular Languages and CFLs
 Some more decision problems

Hilbert and the Formalist Program

- All of mathematics can be axiomatized (e.g. Peano arithmetic, Zermelo-Fraenkel set theory).
- The notion of a proof can be formalized.
 - If C is a claim, then a proof, P, for C is a sequence of statements in the logic.
 - In these formal systems, checking that P is a valid proof for C can be done completely mechanically, much like a compiler checking a program for syntax or type-checking errors.
- This led Hilbert to propose a grand vision for mathematics.

The Hilbert Questions

- Hilbert raised 10 questions in a lecture in 1900, and added 13 more when he published the list.
 - These included many of the most important questions for mathematicians in the 20^{th} century.
 - Many of these questions were aimed at making mathematics completely rigorous.
- We'll focus on his second problem which had three parts:
 - Is mathematics complete?
 I.e. Does every true statement have a proof?
 - Is mathematics consistent?
 I.e. Is it impossible to prove a contradiction?
 - Is mathematics decidable?
 - I.e. Given any claim, is there a procedure by which we can derive a proof for the claim or refute it.
- The last one, like many of Hilbert's questions, asked for a procedure. This raises the question: "What is an algorithm?"

What is an Algorithm? (1/2)

- Prior to Church & Turing: a description of how to compute something.
 - This seems to have been Hilbert's idea in, for example, asking for a procedure with a finite number of steps to determing whether or not a polynomial has an integral root.
 - Gauss and the FFT.
 - Gauss described the decimation-in-time FFT algorithm in a letter to another mathematician in 1805.
 - At the end of the letter, Gauss wrote (in German):
 - Although this method may seem more complicated than the usual approach, I encourage you to try both methods with a 128 point transform, and you will appreciate the superiority of the method that I have described here.
 - Gauss lacked the formal notion of an algorithm, and couldn't quantify the $O(N \log N)$ vs. $O(N^2)$ complexities of the two methods.
 - James Cooley and John Tukey independelty rediscovered Gauss's algorithm 160 years later, and became famous for it.

What is an Algorithm? (2/2)

- With Church and Turing, we can be much more precise:
 - We can say what operations are allowed.
 - We can reason about the time and memory required.
 - We can show that there are problems for which no algorithm exists.
- This led to showing the impossibility of solving several of Hilbert's problems, and with it, the impossibility of completing the formalist program.

Decidable Problems Regular Language

- Decidable problems for Regular Languages
 - Does DFA M accept string w?
 - Is the language of M empty?
 - Does NFA M accept string w?
 - Does regular expression E match string w?
 - Do two DFA/NFA/REs generate the same language?
 - Just about any reasonable question you can ask about a DFA, NFA or RE.
- Decidable problems for CFLs
 - Does CFG G generate string w?
 - Does CFG G generate the empty language?

- $\Sigma = \{0, 1, (,,), \#\}$: use a binary encoding of M.
- $\Gamma = \Sigma \cup \{\Box, \ldots\}$

We'll use eight tapes:

 Q_D : The number of states of M.

 Σ_D : The number of symbols in *M*'s alphabet.

 δ_D : A list of tuples: (q , c , q') to indicate $\delta(q,c) = q'$.

F: A list of accepting states – binary numbers separated by commas.

w: The input string: binary numbers separated by commas.

q: The current state.

c: The current input symbol.

scratch: A tape for scratch work.

The Input Tapes:

Q_D	=	11,	three states
Σ_D	=	11, three input symbols: $a \rightarrow 00, b \rightarrow 01, c \rightarrow$	10
δ_D	=	(00,00,01),(00,01,00),(00,10,00),	
		(01,00,01),(01,01,00),(01,10,10),	
		(10,00,10),(10,1,10),(10,10,10),	transitions
F	=	00,	the accept state
w	=	00,01,00,00,01,10,	sample input

Or, we could combine it all into one tape:

11,11,(00,00,01),(00,01,00),(00,10,00),... (10,10,10)00#00,01,00,00,01,10 \Box^{ω}

- Check that tapes Q_D , Σ_D , δ_D , and F describe a valid DFA:
- Check that tape w describes a valid input string.
- Process w:
- The language $\{D \# w \mid D \text{ is a DFA that accepts } w\}$ is Turing decidable.

- Check that tapes Q_D , Σ_D , δ_D , and F describe a valid DFA:
 - Make sure that δ_D has an entry for every state and input symbol (use the scratch tape as a counter). Make sure that the destination state is in $0 \dots (|Q_D| 1)$.
 - Make sure that every state in F is a valid state.
- Check that tape w describes a valid input string.
- Process w:
- The language $\{D \# w \mid D \text{ is a DFA that accepts } w\}$ is Turing decidable.

- Check that tapes Q_D , Σ_D , δ_D , and F describe a valid DFA:
- Check that tape w describes a valid input string.
- Process w:

```
\begin{array}{l} q \ \leftarrow \ 0; \\ \text{while more symbols in } w \ \{ \\ c \ \leftarrow \ \text{the next symbol of } w \\ & -- \ \text{this moves the head for the } w \ \text{tape} \\ & -- \ \text{one symbol of } \Sigma_D \ \text{to the right.} \\ \text{scan the } \delta \ \text{tape to find a match for } q \ \text{and } c. \\ \text{update } q \ \leftarrow \ q'. \\ \} \\ \text{scan the } F \ \text{tape to find a match for } q. \\ \text{If a match is found, accept.} \\ \text{Otherwise, reject.} \end{array}
```

• The language $\{D \# w \mid D \text{ is a DFA that accepts } w\}$ is Turing decidable.

- Check that tapes Q_D , Σ_D , δ_D , and F describe a valid DFA:
- Check that tape w describes a valid input string.
- Process w:
- \therefore The language $\{D \# w \mid D \text{ is a DFA that accepts } w\}$ is Turing decidable.
 - Actually, we've shown this if D is written on several tapes and w is written on another one.
 - But, we could write D # w on a single input tape, and then copy it to the various tapes described above.
 - Thus, we've shown that there is a TM that decides

 $\{D \# w \mid D \text{ is a DFA that accepts } w\}$

Does CFG *G* **generate** *w***?**

- Make a NTM that guesses the derivation of w and verifies it.
- How long should the derivation be?
 - Let G' be a CNF grammar for G.
 - If $w = \epsilon$, then check to see if $S_0 \to \epsilon$.
 - Otherwise, the derivation for w in G' has 2|w| 1 steps.
 - Note that the procedure for converting an arbitrary grammar to CNF is an algorithm that we can execute on a TM.
- \therefore The language $\{G \# w \mid G \text{ is a CFG that generates } w\}$ is Turing decidable.

The Halting Problem

- Let $HALT = \{M \# w \mid M \text{ halts when run with input } w\}$
 - M is a string that describes a TM.
 - w is a string that describes an input for M.
 - We'll give the details in later lectures.
- There is no TM that decides *HALT*.
 - I'll sketch a proof using pseudo-java programs here.
 - We'll do the mathematical proof next week.
- By the equivalence of TMs with other models of computation:
 - There is no program that can determine whether or not any give program will halt when run with any given input.
 - We'll show that just about any other property that you might want to show about what a program does is undecidable.
 - This doesn't mean that we can't prove some things about some programs.
 - It does mean that for just about any property we might be interested in, we cannot determine whether or not it holds for every program.

Halting in Java

- For the sake of contradiction, assume that we could solve the halting problem for Java programs.
- That means we could write a method: boolean halt(String p, String w) { ... } that returns true if the program described by string p (i.e. the source code for the program) halts when run with the input given by string w.
 - Now, we write the program:

```
class CounterExample;
static boolean halt(String p, String w) {
    ...
}
public static void main(String[] args) {
    if(halt(args[0], args[0]))
        while(true);
    else System.exit(0);
}
```

Let p be the string that is the source code for the program described above.

What happens if we run the program, passing it p as its parameter?

java CounterExample p

- If halt(p, p) == true, then
 - The program will
 - □ halt
 - \Box not halt.
 - But, halt(p, p) is supposed to mean that

- If halt(p, p) == false, then
 - The program will
 - □ halt
 - \Box not halt.
 - But, \neg halt(p, p) is supposed to mean that

Hilbert's 10th Problem

- Let P be system of polynomial equation.
- Does P have a solution with integer values for all of the variables (i.e. P is a system of Diophantine equations)?
- Solution:
 - Make a NTM that first guesses integer values for the variables, in other words, it writes the solution on a tape.
 - Next, the NTM verifies that they are a root.
 - If they are a solution, then the NTM accepts.
 - Otherwise the NTM rejects.
- No upper bound on the size of the values for the variables.
- We have reduced Hilbert's 10^{th} Problem to the Halting Problem.

Hilbert's 10th Problem

- Let P be system of polynomial equation.
- Does P have a solution with integer values for all of the variables (i.e. P is a system of Diophantine equations)?
- Solution:

. . .

- No upper bound on the size of the values for the variables.
 - The NTM may not terminate, or ...
 - It may just be writing a guessing big number for one of the variables.
 - We can't know which is the case without solving the Halting Problem.
 - \therefore Hilbert's 10^{th} problem is Turing recognizable.
- We have reduced Hilbert's 10^{th} Problem to the Halting Problem.

Hilbert's 10th Problem

- Let P be system of polynomial equation.
- Does P have a solution with integer values for all of the variables (i.e. P is a system of Diophantine equations)?
- Solution:

. . .

- No upper bound on the size of the values for the variables.
- We have reduced Hilbert's 10^{th} Problem to the Halting Problem.
 - If we could solve the Halting Problem, we could solve Hilbert's 10^{th} problem.
 - In 1970, Yuri Matijasevic showed that if we could solve Hilbert's 10^{th} problem then we could solve the Halting problem.
 - \therefore Hilbert's 10^{th} problem is not Turing decidable.
 - Thus, we say that the Halting Problem and Hilbert's 10th problem are equivalent.
 - We'll cover this in more detail when we get to Sipser Chapter 5.

A Caution

• Let $ADD = \{x \# y \# z \mid binary(x) + binary(y) = binary(z)\}$

Consider:

if(z == x+y) accept; else while(true);

- This program terminates iff z = x + y.
 - We have shown that if we can solve the Halting Problem, then we could solve the addition problem.
 - This is true, but not very interesting.
 - We can solve the addition problem whether or not we can solve the Halting Problem.

The Odd-Perfect-Number Conjecture

- A perfect number is a number that is equal to the sum of its positive, integer factors (other than itself).
 - Example: 6 = 1 + 2 + 3.
 - Example: 28 = 1 + 2 + 4 + 7 + 14.
- Conjecture: All perfect numbers are even.

Consider:

```
i = 1;
while(true) {
    if(perfect(i)) accept;
    else i = i+1; }
```


This program terminates iff the Odd-Perfect-Number Conjecture is false.

- We have reduced proving the Odd-Perfect-Number Conjecture to solving the Not-Halting Problem.
- We can't possibly reduce the Non-Halting Problem to the Odd-Perfect-Number Conjecture. Why?

This coming week (and beyond)

Reading

- Today: Sipser, 4.1
- Oct. 27 (Monday): Sipser, 4.2 (midterm cut-off)
- Oct. 29 (Wednesday): Sipser, 4.2
- Oct. 31 (A week from today): Sipser, 4.1
- Nov. 3 (A week from Monday): Midterm review.
- Nov. 5 (A week from Wednesday): Midterm 2.

Homework

- Today: Homework 6 due, Homework 7 goes out.
- Oct. 31 (A week from today): Homework 7 due, Homework 8 goes out. No late homework accepted for homework 7.

Homework 8 is extra credit.