Decidability
Mark Greenstreet, CpSc 421, Term 1, 2008/09

@® Some Relevant Hilbert Problems
@ Is mathematics complete?
® |s mathematics consistent?

® |s mathematics decidable?

@ Decision Problems for Regular Languages and CFLs

@® Some more decision problems

24 October 2008 — p.1/17

Hilbert and the Formalist Program

® All of mathematics can be axiomatized (e.g. Peano arithmetic,
Zermelo-Fraenkel set theory).

® The notion of a proof can be formalized.

@ If C is aclaim, then a proof, P, for C is a sequence of statements in the logic.

@ In these formal systems, checking that P is a valid proof for C' can be done
completely mechanically, much like a compiler checking a program for syntax or
type-checking errors.

® This led Hilbert to propose a grand vision for mathematics.

24 October 2008 — p.2/17

TheHilbert Questions

® Hilbert raised 10 questions in a lecture in 1900, and added 13 more
when he published the list.

@ These included many of the most important questions for mathematicians in the
20" century.

@ Many of these questions were aimed at making mathematics completely
rigorous.

® We'll focus on his second problem which had three parts:

@ Is mathematics complete?
|.e. Does every true statement have a proof?

@ Is mathematics consistent?
l.e. Is it impossible to prove a contradiction?

® s mathematics decidable?

l.e. Given any claim, is there a procedure by which we can derive a proof for the
claim or refute it.

® The last one, like many of Hilbert’s questions, asked for a

procedure. This raises the question: “What is an algorithm?”
24 October 2008 — p.3/17

What isan Algorithm? (1/2)

@ Prior to Church & Turing: a description of how to compute something.

@ This seems to have been Hilbert's idea in, for example, asking for a procedure

with a finite number of steps to determing whether or not a polynomial has an
integral root.

@® Gauss and the FFT.
@ Gauss described the decimation-in-time FFT algorithm in a letter to another
mathematician in 1805.
@ At the end of the letter, Gauss wrote (in German):
Although this method may seem more complicated than the usual
approach, | encourage you to try both methods with a 128 point

transform, and you will appreciate the superiority of the method that |
have described here.

@ Gauss lacked the formal notion of an algorithm, and couldn’t quantify the
O(N log N) vs. O(N?) complexities of the two methods.

@® James Cooley and John Tukey independelty rediscovered Gauss’s algorithm
160 years later, and became famous for it.

24 October 2008 — p.4/17

What 1san Algorithm? (2/2)

@ \With Church and Turing, we can be much more precise:
@ We can say what operations are allowed.
@ We can reason about the time and memory required.

@ We can show that there are problems for which no algorithm exists.

@ This led to showing the impossibility of solving several of Hilbert's problems, and

with it, the impossibility of completing the formalist program.

24 October 2008 — p.5/17

Decidable Problems Regular L anguage

® Decidable problems for Regular Languages

Does DFA M accept string w?
Is the language of M empty?
Does NFA M accept string w?

Does regular expression £ match string w?

Do two DFA/NFA/REs generate the same language?

@ Just about any reasonable question you can ask about a DFA, NFA or RE.

® Decidable problems for CFLs
@ Does CFG G generate string w?

@ Does CFG G generate the empty language?

24 October 2008 — p.6/17

Does DFA D Accept w? (TM 1/3)

>»={0,1,(,,,),#}: use a binary encoding of M.
r=>u{l]...}

We’'ll use eight tapes:
@ p:. The number of states of M.
>.p: The number of symbols in M'’s alphabet.
dp: Alist of tuples: (¢, ¢, ¢’) toindicate 6(q,c) = ¢'.
F': A list of accepting states — binary numbers separated by commas.
w: The input string: binary numbers separated by commas.
q. The current state.
c. The current input symbol.
scratch: A tape for scratch work.

24 October 2008 — p.7/17

Does DFA D Accept w? (TM 2/3)
b, c @iﬁ::j{;;gi;?:j[>a,b,c

The Input Tapes:

Qp = 11, three states
>p = 11, threeinputsymbols:a — 00,b — 01,c — 10
op = (00,00,01), (00,01, 00), (00,10,00),
(01, 00,01), (01, 01,00), (01, 10, 10),
(10, 00, 10),(10,1,10), (10,10, 10), transitions
F = 00, the accept state
w = 00,01, 00, 00, 01, 10, sample input

Or, we could combine it all into one tape:
11, 11, (00, 00, 01), (00, 01, 00), (00, 10, 00), ...
(10, 10, 10) 00#00, 01, 00, 00, 01, 10

24 October 2008 — p.8/17

Does DFA D accept w? (TM 3/3)

@ Check that tapes Qp, p, dp, and F describe a valid DFA:
@ Check that tape w describes a valid input string.

@® Process w:

@ - Thelanguage {D+#w | D is a DFA that accepts w} is Turing decidable.

24 October 2008 — p.9/17

Does DFA D accept w? (TM 3/3)

@ Check that tapes Qp, p, dp, and F describe a valid DFA:

@ Make sure that §p has an entry for every state and input symbol (use the
scratch tape as a counter). Make sure that the destination state is in

0...(1Qp| - 1).

@ Make sure that every state in F is a valid state.
@ Check that tape w describes a valid input string.

@® Process w:

@ . Thelanguage {D#w | D is a DFA that accepts w} is Turing decidable.

24 October 2008 — p.9/17

Does DFA D accept w? (TM 3/3)

@ Check that tapes Qp, p, dp, and F describe a valid DFA:

@ Check that tape w describes a valid input string.

@® Process w:

q — 0
while nore synbols in w {
c «— the next synbol of w
-- this noves the head for the w tape
-- one synbol of Xp to the right.
scan the ¢ tape to find a match for ¢ and c.
update g «— ¢’.
}
scan the F tape to find a match for gq.
|f a match is found, accept.
Q herwi se, reject.

@® - Thelanguage {D#uw | D is a DFA that accepts w} is Turing decidable.

24 October 2008 — p.9/17

Does DFA D accept w? (TM 3/3)

@ Check that tapes Qp, p, dp, and F describe a valid DFA:
@ Check that tape w describes a valid input string.
@® Process w:

@ . Thelanguage {D#w | D is a DFA that accepts w} is Turing decidable.

@ Actually, we’'ve shown this if D is written on several tapes and w is written on
another one.

@ But, we could write D#w on a single input tape, and then copy it to the various
tapes described above.

@ Thus, we've shown that there is a TM that decides

{D#w | D is a DFA that accepts w }

24 October 2008 — p.9/17

Does CFG G generate w?

® Make a NTM that guesses the derivation of w and verifies it.

® How long should the derivation be?
Let G’ be a CNF grammar for G.

If w = ¢, then check to see if Sop — e.
Otherwise, the derivation for w in G’ has 2|w| — 1 steps.

Note that the procedure for converting an arbitrary grammar to CNF is an
algorithm that we can execute on a TM.

® . Thelanguage {G#w | G is a CFG that generates w} iS Turing
decidable.

24 October 2008 — p.10/17

TheHalting Problem

® Let HALT = {M#w | M halts when run with input w }
@ 1/ is a string that describes a TM.

@ w is a string that describes an input for M.
@ Wwe'll give the details in later lectures.
® There is no TM that decides HALT.
@ 1'll sketch a proof using pseudo-java programs here.

® \We'll do the mathematical proof next week.

® By the equivalence of TMs with other models of computation:

@ There is no program that can determine whether or not any give program will
halt when run with any given input.

@ Wwe'll show that just about any other property that you might want to show about
what a program does is undecidable.

This doesn’t mean that we can’t prove some things about some programs.

It does mean that for just about any property we might be interested in, we
cannot determine whether or not it holds for every program.

24 October 2008 — p.11/17

Halting In Java

@ For the sake of contradiction, assume that we could solve the halting problem for
Java programs.

@® That means we could write a method: boolean halt(String p, String w) { ...}
that returns true if the program described by string p (i.e. the source code for the
program) halts when run with the input given by string w.

@® Now, we write the program:

class CounterExample;
static boolean halt(String p, String w) {

}

public static void main(String[] args) {
if(halt(args|[0], args[0]))
while(true);
else System.exit(0);

}

@ Let p be the string that is the source code for the program described above.

@ What happens if we run the program, passing it p as its parameter?

24 October 2008 — p.12/17

Jjava Counter Example p

@ |If halt(p, p) == true, then

® The program will
(1 halt
[1 not halt.

@ But, halt(p, p) IS supposed to mean that

@ If halt(p, p) == false, then

® The program will
(1 halt
[1 not halt.

@® But, —halt(p, p) is supposed to mean that

24 October 2008 — p.13/17

Hilbert’s 10" Problem

® Let P be system of polynomial equation.

® Does P have a solution with integer values for all of the variables
(i.,e. P is a system of Diophantine equations)?

® Solution:

@ Make a NTM that first guesses integer values for the variables,
in other words, it writes the solution on a tape.

@ Next, the NTM verifies that they are a root.
@ If they are a solution, then the NTM accepts.

@ Otherwise the NTM rejects.

® No upper bound on the size of the values for the variables.

@® We have reduced Hilbert's 10" Problem to the Halting Problem.

24 October 2008 — p.14/17

Hilbert’s 10" Problem

® Let P be system of polynomial equation.

® Does P have a solution with integer values for all of the variables
(i.,e. P is a system of Diophantine equations)?

@® Solution:
o ..

® No upper bound on the size of the values for the variables.
® The NTM may not terminate, or ...
@ It may just be writing a guessing big number for one of the variables.

@ We can’t know which is the case without solving the Halting Problem.

@ - Hilbert’s 10t problem is Turing recognizable.

@® We have reduced Hilbert’s 10" Problem to the Halting Problem.

24 October 2008 — p.14/17

Hilbert’s 10" Problem

® Let P be system of polynomial equation.

® Does P have a solution with integer values for all of the variables
(i.,e. P is a system of Diophantine equations)?

® Solution:
o ..

® No upper bound on the size of the values for the variables.

® \We have reduced Hilbert's 10" Problem to the Halting Problem.

@ If we could solve the Halting Problem, we could solve Hilbert's 10t" problem.

@ In 1970, Yuri Matijasevic showed that if we could solve Hilbert’s 10t problem
then we could solve the Halting problem.

@ - Hilbert’s 10t problem is not Turing decidable.

@ Thus, we say that the Halting Problem and Hilbert’s 10t" problem are
equivalent.

@ We'll cover this in more detail when we get to Sipser Chapter 5.

24 October 2008 — p.14/17

A Caution

® Let ADD = {z#y#z | binary(x) + binary(y) = binary(z)}
® Consider:

| f(z == xz+y) accept; else while(true);

® This program terminates iff z = x + y.

@ We have shown that if we can solve the Halting Problem, then we could solve
the addition problem.

@ This is true, but not very interesting.

We can solve the addition problem whether or not we can solve the Halting
Problem.

24 October 2008 — p.15/17

The Odd-Perfect-Number Conjecture

A perfect number is a number that is equal to the sum of its positive, integer factors
(other than itself).

® Example:6=1+2+3.
@® Example:28=1+2+4+7+ 14.

Conjecture: All perfect numbers are even.
Consider:

I = 1;

whil e(true) {
| f (perfect(i)) accept;
elsei =i+1; }

This program terminates iff the Odd-Perfect-Number Conjecture is false.

We have reduced proving the Odd-Perfect-Number Conjecture to solving the
Not-Halting Problem.

We can’t possibly reduce the Non-Halting Problem to the Odd-Perfect-Number
Conjecture. Why?

24 October 2008 — p.16/17

Thiscoming week (and beyond)

® Reading

Today: Sipser, 4.1

Oct. 27 (Monday): Sipser, 4.2 (midterm cut-off)
Oct. 29 (Wednesday): Sipser, 4.2

Oct. 31 (A week from today): Sipser, 4.1

Nov. 3 (A week from Monday): Midterm review.

@® Nov. 5 (A week from Wednesday): Midterm 2.

® Homework
® Today: Homework 6 due, Homework 7 goes out.

@ Oct. 31 (A week from today): Homework 7 due, Homework 8 goes out.
No late homework accepted for homework 7.

Homework 8 is extra credit.

24 October 2008 — p.17/17

	Hilbert and the Formalist Program
	The Hilbert Questions
	What is an Algorithm? (1/2)
	What is an Algorithm? (2/2)
	Decidable Problems Regular Languages and CFLs
	Does DFA D Accept w? (TM 1/3)
	Does DFA D Accept w? (TM 2/3)
	Does DFA D accept w? (TM 3/3)
	Does CFG G generate w?
	The Halting Problem
	Halting in Java
	java CounterExample p
	Hilbert's 10^{th} Problem
	A Caution
	The Odd-Perfect-Number Conjecture
	This coming week (and beyond)

