
Decidability
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v Some Relevant Hilbert Problems
v Is mathematics complete?
v Is mathematics consistent?
v Is mathematics decidable?

v Decision Problems for Regular Languages and CFLs

v Some more decision problems

24 October 2008 – p.1/17

Hilbert and the Formalist Program
v All of mathematics can be axiomatized (e.g. Peano arithmetic,

Zermelo-Fraenkel set theory).

v The notion of a proof can be formalized.
v If C is a claim, then a proof, P , for C is a sequence of statements in the logic.

v In these formal systems, checking that P is a valid proof for C can be done

completely mechanically, much like a compiler checking a program for syntax or

type-checking errors.

v This led Hilbert to propose a grand vision for mathematics.

24 October 2008 – p.2/17

The Hilbert Questions
v Hilbert raised 10 questions in a lecture in 1900, and added 13 more

when he published the list.
v These included many of the most important questions for mathematicians in the

20th century.

v Many of these questions were aimed at making mathematics completely

rigorous.

v We’ll focus on his second problem which had three parts:
v Is mathematics complete?

I.e. Does every true statement have a proof?
v Is mathematics consistent?

I.e. Is it impossible to prove a contradiction?
v Is mathematics decidable?

I.e. Given any claim, is there a procedure by which we can derive a proof for the

claim or refute it.

v The last one, like many of Hilbert’s questions, asked for a
procedure. This raises the question: “What is an algorithm?”

24 October 2008 – p.3/17

What is an Algorithm? (1/2)
v Prior to Church & Turing: a description of how to compute something.

v This seems to have been Hilbert’s idea in, for example, asking for a procedure
with a finite number of steps to determing whether or not a polynomial has an
integral root.

v Gauss and the FFT.
v Gauss described the decimation-in-time FFT algorithm in a letter to another

mathematician in 1805.
v At the end of the letter, Gauss wrote (in German):

Although this method may seem more complicated than the usual
approach, I encourage you to try both methods with a 128 point
transform, and you will appreciate the superiority of the method that I
have described here.

v Gauss lacked the formal notion of an algorithm, and couldn’t quantify the
O(N log N) vs. O(N2) complexities of the two methods.

v James Cooley and John Tukey independelty rediscovered Gauss’s algorithm
160 years later, and became famous for it.

24 October 2008 – p.4/17

What is an Algorithm? (2/2)
v With Church and Turing, we can be much more precise:

v We can say what operations are allowed.
v We can reason about the time and memory required.
v We can show that there are problems for which no algorithm exists.

v This led to showing the impossibility of solving several of Hilbert’s problems, and

with it, the impossibility of completing the formalist program.

24 October 2008 – p.5/17

Decidable Problems Regular Languages
v Decidable problems for Regular Languages

v Does DFA M accept string w?
v Is the language of M empty?
v Does NFA M accept string w?
v Does regular expression E match string w?
v Do two DFA/NFA/REs generate the same language?

v Just about any reasonable question you can ask about a DFA, NFA or RE.

v Decidable problems for CFLs
v Does CFG G generate string w?

v Does CFG G generate the empty language?

24 October 2008 – p.6/17

Does DFA D Accept w? (TM 1/3)
Σ = {0,1,(,,,),#}: use a binary encoding of M .

Γ = Σ ∪ {�, . . .}

We’ll use eight tapes:

QD : The number of states of M .

ΣD : The number of symbols in M ’s alphabet.

δD : A list of tuples: (q , c, q′) to indicate δ(q, c) = q′.

F : A list of accepting states – binary numbers separated by commas.

w: The input string: binary numbers separated by commas.

q: The current state.

c: The current input symbol.

scratch : A tape for scratch work.

24 October 2008 – p.7/17

Does DFA D Accept w? (TM 2/3)

0 a,b,c

a

ca

b

b,c 1 2

The Input Tapes:

QD = 11, three states

ΣD = 11, three input symbols: a→ 00, b→ 01, c→ 10

δD = (00,00,01),(00,01,00),(00,10,00),

(01,00,01),(01,01,00),(01,10,10),

(10,00,10),(10,1,10),(10,10,10), transitions

F = 00, the accept state

w = 00,01,00,00,01,10, sample input

Or, we could combine it all into one tape:
11,11,(00,00,01),(00,01,00),(00,10,00),. . .
(10,10,10)00#00,01,00,00,01,10�ω

24 October 2008 – p.8/17

Does DFA D accept w? (TM 3/3)
v Check that tapes QD , ΣD , δD , and F describe a valid DFA:

v Check that tape w describes a valid input string.

v Process w:

v
∴ The language {D#w | D is a DFA that accepts w} is Turing decidable.

24 October 2008 – p.9/17

Does DFA D accept w? (TM 3/3)
v Check that tapes QD , ΣD , δD , and F describe a valid DFA:

v Make sure that δD has an entry for every state and input symbol (use the
scratch tape as a counter). Make sure that the destination state is in
0 . . . (|QD| − 1).

v Make sure that every state in F is a valid state.

v Check that tape w describes a valid input string.

v Process w:

v
∴ The language {D#w | D is a DFA that accepts w} is Turing decidable.

24 October 2008 – p.9/17

Does DFA D accept w? (TM 3/3)
v Check that tapes QD , ΣD , δD , and F describe a valid DFA:

v Check that tape w describes a valid input string.
v Process w:

q ← 0;

while more symbols in w {

c ← the next symbol of w

-- this moves the head for the w tape

-- one symbol of ΣD to the right.

scan the δ tape to find a match for q and c.

update q ← q′.

}

scan the F tape to find a match for q.

If a match is found, accept.

Otherwise, reject.

v
∴ The language {D#w | D is a DFA that accepts w} is Turing decidable.

24 October 2008 – p.9/17

Does DFA D accept w? (TM 3/3)
v Check that tapes QD , ΣD , δD , and F describe a valid DFA:

v Check that tape w describes a valid input string.

v Process w:

v
∴ The language {D#w | D is a DFA that accepts w} is Turing decidable.

v Actually, we’ve shown this if D is written on several tapes and w is written on
another one.

v But, we could write D#w on a single input tape, and then copy it to the various
tapes described above.

v Thus, we’ve shown that there is a TM that decides

{D#w | D is a DFA that accepts w}

24 October 2008 – p.9/17

Does CFG G generate w?
v Make a NTM that guesses the derivation of w and verifies it.

v How long should the derivation be?
v Let G′ be a CNF grammar for G.
v If w = ǫ, then check to see if S0 → ǫ.
v Otherwise, the derivation for w in G′ has 2|w| − 1 steps.

v Note that the procedure for converting an arbitrary grammar to CNF is an

algorithm that we can execute on a TM.

v ∴ The language {G#w | G is a CFG that generates w} is Turing
decidable.

24 October 2008 – p.10/17

The Halting Problem
v Let HALT = {M#w | M halts when run with input w}

v M is a string that describes a TM.
v w is a string that describes an input for M .

v We’ll give the details in later lectures.

v There is no TM that decides HALT .
v I’ll sketch a proof using pseudo-java programs here.

v We’ll do the mathematical proof next week.

v By the equivalence of TMs with other models of computation:
v There is no program that can determine whether or not any give program will

halt when run with any given input.
v We’ll show that just about any other property that you might want to show about

what a program does is undecidable.
v This doesn’t mean that we can’t prove some things about some programs.

v It does mean that for just about any property we might be interested in, we

cannot determine whether or not it holds for every program.

24 October 2008 – p.11/17

Halting in Java
v For the sake of contradiction, assume that we could solve the halting problem for

Java programs.

v That means we could write a method: boolean halt(String p, String w) { . . . }

that returns true if the program described by string p (i.e. the source code for the
program) halts when run with the input given by string w.

v Now, we write the program:

class CounterExample;

static boolean halt(String p, String w) {

. . .

}

public static void main(String[] args) {

if(halt(args[0], args[0]))

while(true);

else System.exit(0);

}

v Let p be the string that is the source code for the program described above.

v What happens if we run the program, passing it p as its parameter?

24 October 2008 – p.12/17

java CounterExample p
v If halt(p, p) == true, then

v The program will
� halt
� not halt.

v But, halt(p, p) is supposed to mean that

v If halt(p, p) == false, then
v The program will

� halt
� not halt.

v But, ¬halt(p, p) is supposed to mean that

24 October 2008 – p.13/17

Hilbert’s 10
th Problem

v Let P be system of polynomial equation.

v Does P have a solution with integer values for all of the variables
(i.e. P is a system of Diophantine equations)?

v Solution:
v Make a NTM that first guesses integer values for the variables,

in other words, it writes the solution on a tape.
v Next, the NTM verifies that they are a root.
v If they are a solution, then the NTM accepts.

v Otherwise the NTM rejects.

v No upper bound on the size of the values for the variables.

v We have reduced Hilbert’s 10th Problem to the Halting Problem.

24 October 2008 – p.14/17

Hilbert’s 10
th Problem

v Let P be system of polynomial equation.

v Does P have a solution with integer values for all of the variables
(i.e. P is a system of Diophantine equations)?

v Solution:
v . . .

v No upper bound on the size of the values for the variables.
v The NTM may not terminate, or . . .
v It may just be writing a guessing big number for one of the variables.
v We can’t know which is the case without solving the Halting Problem.

v
∴ Hilbert’s 10th problem is Turing recognizable.

v We have reduced Hilbert’s 10th Problem to the Halting Problem.

24 October 2008 – p.14/17

Hilbert’s 10
th Problem

v Let P be system of polynomial equation.

v Does P have a solution with integer values for all of the variables
(i.e. P is a system of Diophantine equations)?

v Solution:
v . . .

v No upper bound on the size of the values for the variables.

v We have reduced Hilbert’s 10th Problem to the Halting Problem.
v If we could solve the Halting Problem, we could solve Hilbert’s 10th problem.
v In 1970, Yuri Matijasevic showed that if we could solve Hilbert’s 10th problem

then we could solve the Halting problem.
v

∴ Hilbert’s 10th problem is not Turing decidable.
v Thus, we say that the Halting Problem and Hilbert’s 10th problem are

equivalent.

v We’ll cover this in more detail when we get to Sipser Chapter 5.

24 October 2008 – p.14/17

A Caution
v Let ADD = {x#y#z | binary(x) + binary(y) = binary(z)}

v Consider:

if(z == x+y) accept; else while(true);

v This program terminates iff z = x + y.
v We have shown that if we can solve the Halting Problem, then we could solve

the addition problem.
v This is true, but not very interesting.

v We can solve the addition problem whether or not we can solve the Halting

Problem.

24 October 2008 – p.15/17

The Odd-Perfect-Number Conjecture
v A perfect number is a number that is equal to the sum of its positive, integer factors

(other than itself).
v Example: 6 = 1 + 2 + 3.
v Example: 28 = 1 + 2 + 4 + 7 + 14.

v Conjecture: All perfect numbers are even.
v Consider:

i = 1;

while(true) {

if(perfect(i)) accept;

else i = i+1; }

v This program terminates iff the Odd-Perfect-Number Conjecture is false.

v We have reduced proving the Odd-Perfect-Number Conjecture to solving the
Not-Halting Problem.

v We can’t possibly reduce the Non-Halting Problem to the Odd-Perfect-Number

Conjecture. Why?

24 October 2008 – p.16/17

This coming week (and beyond)
v Reading

v Today: Sipser, 4.1
v Oct. 27 (Monday): Sipser, 4.2 (midterm cut-off)
v Oct. 29 (Wednesday): Sipser, 4.2
v Oct. 31 (A week from today): Sipser, 4.1
v Nov. 3 (A week from Monday): Midterm review.

v Nov. 5 (A week from Wednesday): Midterm 2.

v Homework
v Today: Homework 6 due, Homework 7 goes out.
v Oct. 31 (A week from today): Homework 7 due, Homework 8 goes out.

No late homework accepted for homework 7.

Homework 8 is extra credit.

24 October 2008 – p.17/17

	Hilbert and the Formalist Program
	The Hilbert Questions
	What is an Algorithm? (1/2)
	What is an Algorithm? (2/2)
	Decidable Problems Regular Languages and CFLs
	Does DFA D Accept w? (TM 1/3)
	Does DFA D Accept w? (TM 2/3)
	Does DFA D accept w? (TM 3/3)
	Does CFG G generate w?
	The Halting Problem
	Halting in Java
	java CounterExample p
	Hilbert's 10^{th} Problem
	A Caution
	The Odd-Perfect-Number Conjecture
	This coming week (and beyond)

