Fun with Turing Machines
 Mark Greenstreet, CpSc 421, Term 1, 2008/09

- Primes
- Simple Operations
- A Programmable Turing Machine

Prime Sieve Algorithms

```
boolean[] primes(int n) {
    boolean[] b = new boolean[n];
    int p=2; // current prime
    for(int i = 0; i < n; i++) b[i] = true;
    b[0] = false; b[1] = false;
    while(p<n) {
    for(int i = 2*p; i < n; i += p)
        b[i] = false; // a multiple of p
    for(p++; (p < n) && !b[p]; p++); // find next prime
    }
    return(b);
}
```


A TM for 1^{p}, where p is prime

Strategy: use tape as a sieve.

- For smallest prime not yet considered, cross-off all multiples of that prime.
- If we cross of the last 1 of the input string, then reject.

Otherwise, if the last 1 of the input string is the next prime to consider, then accept.

- Example:

Input String	11111111111111111
1 not prime	01111111111111111
$\mathrm{p}=2$	$011 \otimes 1 \quad$ eliminate multiples of 2
$\mathrm{p}=3$	$01101 \otimes 1001 \otimes 10 \otimes 01$ eliminate multiples of 3
$p=5$	$011010100 \otimes 1010 \otimes 01$ eliminate multiples of 5
$\mathrm{p}=7$	$0110101000101 \otimes 001$
$\mathrm{p}=11$	01101010001010001
$p=13$	01101010001010001
$\mathrm{p}=17$	01101010001010001
accept	01101010001010001

- But, the tape head can only move one square at a time.

Using Markers

$(-)$	$\mathbf{0}$	P	$\mathbf{1}$	\square	\square	\cdot														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

-	$\mathbf{0}$	\mathbf{p}	$\mathbf{1}$	\square	\square	\cdot														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

-	$\mathbf{0}$	P	$\mathbf{1}$	\square	\square	\cdot														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

-	$\mathbf{0}$	P	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\square	\square	\cdots												
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

-	$\mathbf{0}$	\mathbf{p}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\square	\square	\cdots												
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

\oplus	$\mathbf{0}$	\mathbf{p}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\square	\square	\cdot												
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

-	$\mathbf{0}$	\mathbf{p}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\square	\square	\cdot												
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

-	$\mathbf{0}$	\mathbf{P}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\square	\square	\cdot												
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

-	$\mathbf{0}$	\mathbf{D}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\square	\square	\cdots										
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

-	$\mathbf{0}$	\mathbf{p}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\square	\square	\cdots										
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

Using Markers

\oplus	$\mathbf{0}$	\mathbf{p}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	\square	\square	\cdot										
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			

- We'll prepend a left end-marker, \vdash to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
- We'll initially place the blue marker at the zero position of the tape,
- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
- We'll write a 0 on the square for the red marker,
- and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \square, the end of the string.

A TM for 1^{p}

How it works (states $q_{0} \ldots q_{3}$)

- Omitted edges are to the reject state:
- Most such edges can never be taken.
- Real rejects occur from states q_{0}, q_{1} and q_{9} when reading a \square.
- States $q_{0} \ldots q_{3}$ initialize the computation:
$q_{0} \rightarrow q_{1}$ writes the left endmarker on the tape.
- $q_{1} \rightarrow q_{2}$ makes sure that there are at least two inputs in the input. If the machine encounters a \square on either of the first two squares, it rejects.
$q_{2} \rightarrow q_{3}$ marks 2 as the first prime.
- q_{3} reads to the end of the tape, and then
$q_{3} \rightarrow q_{4}$ appends a 1 to make up for the leftmost 1 that was overwritten with the \vdash symbol.

How it works (states $q_{4} \ldots q_{7}$)

- State q_{4} moves the head to the left to the square with the "blue" marker. That is either a $0^{\prime}, 1^{\prime}$ or \vdash.
- States $q_{4} \ldots q_{7}$ move the markers to the right:
$q_{4} \rightarrow q_{5}$ removes the left marker from the previous square.
$q_{5} \rightarrow q_{6}$ places the left marker on the next square. If that square held the p symbol, that means we've moved p positions and the machine transitions to state q_{11} to set the corresponding square at the right marker to 0 (described below).
- q_{6} moves to the right until the right marker is found.

If them machine encounters a \square first, that means we're done scanning for the multiples of the current prime. The machine transitions to state q_{8} to determine the next prime to check.
$q_{6} \rightarrow q_{7}$ and $q_{7} \rightarrow q_{8}$ move the right marker one square to the right. Then the machine goes back to state q_{4} to return the head to the left marker and start the next round.

How it works (states $q_{8} \ldots q_{10}$)

- States $q_{8} \ldots q_{10}$ look for the next prime. a multiple of the current prime.
- q_{8} moves to the left to find the current prime.
$q_{8} \rightarrow q_{9}$ changes the p symbol to a 1 .
- q_{9} moves to the right to find a square marked with a 1 (indicating a prime).
- $q_{9} \rightarrow q_{10}$ marks that prime with p^{\prime}.

If no such prime is found, then the last square on the tape must be marked with a zero (i.e. it is not a prime). The machine encounters a \square and rejects.

- q_{10} moves to the left, clearing the left marker on the way. This means that the left-marker is on the \vdash square, leaving the machine ready to eliminate multiples of the new prime.

How it works (states $q_{11} \ldots q_{13}$)

- States $q_{11} \ldots q_{13}$ write a 0 on a square that is a multiple of the current prime.
- $q_{11} \rightarrow q_{\text {accept }}$:
- If the symbol following the square for the prime is a \square, then the input string was 1^{p} where p is the current prime. The machine accepts.
- Otherwise, the machine moves to the right, $q_{11} \rightarrow q_{12}$, to start looking for the right marker.
- If the right marker is immediately after the prime, the machine move directly from state q_{11} to q_{13}. This happens when $p=2$ and the right marker is on the square for 3 .
- q_{12} the machine moves to the right looking for the right marker.
$q_{12} \rightarrow q_{13}$ the machine moves the right mareer one square to the right.
$q_{13} \rightarrow q_{4}$ if the next square is either a 0 or a 1 , the machine writes a 0 (to indicate that the square is in a non-prime position) and marks it for the next round of the scan.

A TM that acts like a "real" computer

The tape
Data manipulation
Making the TM programmable

The Tape

The tape is of the form

$$
\vdash \Psi x_{0} \Psi x_{1} \Psi \cdots \Psi x_{n} \Psi \square^{*}
$$

where
Each x_{i} is in $L\left(1^{*}\right)$. If $x_{i}=1^{j}$, then x_{i} represents the integer j.

- This unary encoding is inefficient (uses lots of tape), but tape is free -). $^{-}$.
- We could describe a machine that used binary (or decimal, etc.) for its number representations, but that would add extra details to the description that aren't critical for our point that we can make a programmable computer.

Each Ψ is a \# symbol followed by a string in $\{A, B, P\}^{*}$.

- The tape has exactly one A, exactly one B and exactly one P.
- The symbols A, B and P mark words that the "program" is currently manipulating.

Operation: insert a 1

- Add states $q_{11}, q_{1 \#}, q_{1 A}, q_{1 B}, q_{1 P}$, and $q_{1 \square}$ with the following transistions:

	1	$\#$	A	B	P	\square
q_{11}	$\left(1, q_{11}\right)$	$\left(1, q_{1 \#}\right)$	$\left(1, q_{1 A}\right)$	$\left(1, q_{1 B}\right)$	$\left(1, q_{1 P}\right)$	$\left(1, q_{1 \square}\right)$
$q_{1 \#}$	$\left(\#, q_{11}\right)$	$\left(\#, q_{1 \#}\right)$	$\left(\#, q_{1 A}\right)$	$\left(\#, q_{1 P}\right)$	$\left(\#, q_{1 P}\right)$	$\left(\#, q_{1 \square}\right)$
$q_{1 A}$	$\left(A, q_{11}\right)$	$\left(A, q_{1 \#}\right)$	$\left(A, q_{1 A}\right)$	$\left(A, q_{1 B}\right)$	$\left(A, q_{1 P}\right)$	$\left(A, q_{1 \square}\right)$
$q_{1 B}$	$\left(B, q_{11}\right)$	$\left(B, q_{1 \#}\right)$	$\left(B, q_{1 A}\right)$	$\left(B, q_{1 B}\right)$	$\left(B, q_{1 P}\right)$	$\left(B, q_{1 \square}\right)$
$q_{1 P}$	$\left(P, q_{11}\right)$	$\left(P, q_{1 \#}\right)$	$\left(P, q_{1 A}\right)$	$\left(P, q_{1 B}\right)$	$\left(P, q_{1 P}\right)$	$\left(P, q_{1 \square}\right)$

- The entry in row q column c is a tuple of the form $\left(c^{\prime}, q^{\prime}\right)$. When the machine is in state q and there is a con the current tape square, the machine writes a c^{\prime} on the tape, and transitions to state q^{\prime} and moves to the rights.

Inserting a 1: explanation

- This machine-fragment starts in state q_{11} at the position where a 1 should be inserted and ends in state $q_{1 \square}$ having inserted the one.
- Initially,
- The machine writes a 1 ,
- Uses its finite state to store the value of the tape symbol that it overwrote, and
- moves one square to the right.
- At each subsequent step

The machine writes the symbol from the previous square,

- Uses its finite state to store the value of the symbol that was at this square, and
- moves one square to the right.

When it reaches the end of the tape string (i.e. a \square)

- The machine writes the symbol from the previous square and
- moves one square to the right, entering state $q_{1 \square}$.
- The rest of the TM can "connect" with state $q_{1 \square}$ to continue the computation.

Deleting a symbol

We add states to:

Write a at the current tape position and move to the right.

- Continue moving to the right until we reach another \square (the end of the tape string).
- Use a variation of the "insert a 1" procedure to "insert" another blank on the last non-blank square of the tape, and go to the left, copying the overwritten symbols until we reach the \square at we wrote at the beginning.
- Now, the symbol that we had wanted to delete is gone, and the string to its right has been shifted over one tape square.

The resetA "instruction"

- Move the A marker to the first \# (i.e. have it mark x_{0}).
loop \{ Move left to the endmarker, \vdash.
Move right two squares (one after the first \#).
Insert a A (like inserting a 1 as described above).
Move to the left (from the right end of the tape)
until reaching the previous A.
Delete the previous A (as described above).

The clrA "instruction"

- Set the word marked by A to 1^{0} (a.k.a. ϵ).
loop \{ Move left to the endmarker, \vdash.
Move to the right until reaching the A.
Move to the right past the A and any other markers (i.e. B or P).
if the current symbol is a 1 delete it (as described above). else exit-loop.

The incrA "instruction"

- Add one to the word marked by A.

Move left to the endmarker, \vdash. Move to the right until reaching the A.
Move to the right past the A and any other markers
(i.e. B or P).

Insert a 1 as described above.

The addAB "instruction"

- Replace the word marked by A with the sum of the word marked by A and the word marked by B.

Move left to the endmarker, \vdash.
Move to the right until reaching the B.
Move to the right past the B and any other markers (i.e. A or P). while the current symbol is a 1 \{

Mark the current symbol (i.e. change it to 1^{\prime}).
Increment the word marked by A (see the incrA instruction).
Move to the 1^{\prime}.
Unmark it and move one square to the right.
if the current symbol is a \#, exit-loop.
\}

- Other "ALU instructions" can be implemented in a similar manner.

The moveAB "instruction"

- Let x_{B} be the value of the word marked by the B marker. Move A to mark $x_{x_{B}}$.
- For example, if B marks word 5 , and A marks word 17, and $x_{5}=42$ and $x_{1} 7=2$, then executing moveAB will
- Set A to mark word 42 .
- Leave B marking word 5 .

The rest of the values on the tape are unchanged.

Implementing moveAB

- Move left to the endmarker, \vdash.

Move to the right until reaching the A.
Delete the A.
Move left to the endmarker, \vdash.
Write an A after the first \#.
for each 1 in the word marked by B \{
Move the A marker one \# to the right.
(If there is not such \#, append \#'s to the end of the tape string as needed.)
\}

- This lets us move the markers to arbitrary locations on the tape - in other words, it provides memory access.
- Note that by appending \#'s onto the tape as needed, our TM computer never runs out of memory.

Instruction summary

- We now have basic instructions for data manipulation:
- resetA: Move the A marker to word x_{0}.
- clrA: Set the word marked by A to 0 .
incrA: Add one to the word marked by A.
- addAB: Replace the word marked by A with the sum of the words marked by A and B.
moveAB: Move the A marker to the word indicated by the word marked by the B marker.
- We could make similar "instructions" manipulating the word marked by the B (or P) markers.
- For example, moveAA sets the A marker to the word indicated by the word at the current position of the A marker.
- If A marks x_{17}, and x_{17} holds the value 1^{42}, then moveAA will set the A marker to mark word x_{42}.

An example

- Copy the word marked by B to x_{5} :

resetA	A now marks x_{0}
clrA	$x_{0} \leftarrow 0$
incrA	$x_{0} \leftarrow 1$
incrA	$x_{0} \leftarrow 2$
incrA	$x_{0} \leftarrow 3$
incrA	$x_{0} \leftarrow 4$
incrA	$x_{0} \leftarrow 5$
moveAA	A now marks x_{5}
clrA	$x_{5} \leftarrow 0$
addAB	$x_{5} \leftarrow x_{B}$

where x_{B} is the value of the word marked by B.

- But how do we store and execute instructions?

A Stored Program TM

- the P marker is the "program counter."
- I added instructions for accept and reject.
- The testA instruction implements a branch:
- if the word marked by A is non-zero, then next instruction is executed normally.
otherwise, the f states provide alternative implementations of each instruction.

This week

- Reading

October 20 (Today): Sipser3.2.
October 22 (Wednesday): Sipser3.3.

- October 24 (Friday): Sipser4.1.
- Homework

October 20 (Today): Homework 5 due.
October 24 (a week from today): Homework 6 due; homework 7 goes out.

