
Fun with Turing Machines
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v Primes

v Simple Operations

v A Programmable Turing Machine

20 October 2008 – p.1/24

Prime Sieve Algorithms

boolean[] primes(int n) {

boolean[] b = new boolean[n];

int p = 2; // current prime

for(int i = 0; i < n; i++) b[i] = true;

b[0] = false; b[1] = false;

while(p < n) {

for(int i = 2*p; i < n; i += p)

b[i] = false; // a multiple of p

for(p++; (p < n) && !b[p]; p++); // find next prime

}

return(b);

}

20 October 2008 – p.2/24

A TM for 1p, wherep is prime
Strategy: use tape as a sieve.

v For smallest prime not yet considered, cross-off all multiples of that prime.

v If we cross of the last 1 of the input string, then reject.

v Otherwise, if the last 1 of the input string is the next prime to consider, then accept.

v Example:

Input String 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 not prime 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

p = 2 0 1 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 eliminate multiples of 2

p = 3 0 1 1 0 1 ⊗ 1 0 ⊗ 0 1 ⊗ 1 0 ⊗ 0 1 eliminate multiples of 3

p = 5 0 1 1 0 1 0 1 0 0 ⊗ 1 0 1 0 ⊗ 0 1 eliminate multiples of 5

p = 7 0 1 1 0 1 0 1 0 0 0 1 0 1 ⊗ 0 0 1 . . .

p = 11 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1

p = 13 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1

p = 17 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1

accept 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1

v But, the tape head can only move one square at a time.

20 October 2008 – p.3/24

Using Markers
p 1 1 1 1 1 11 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
p 1 1 1 1 1 11 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
1 1 1 1 1 11 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 1

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
0 1 1 1 1 11 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 1

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
0 1 1 1 1 11 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 1

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
0 1 1 1 1 11 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 1

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
0 1 1 1 1 11 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 1

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
0 1 1 1 1 11 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 1

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
01 1 1 1 11 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 01

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
01 1 1 1 11 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 01

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

Using Markers
01 1 1 1 11 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 p 01

v We’ll prepend a left end-marker, ⊢ to the tape.
Note that this is at the “zero” position for the string.

v Imagine that we have two markers, a blue one and a red one.

v We’ll initially place the blue marker at the zero position of the tape,
v and we’ll initially place the red marker on the square for the current prime.

v Now, we’ll repeatedly move both markers to the right one square at a time.

v When the blue marker reaches the square for the current prime
v We’ll write a 0 on the square for the red marker,
v and we’ll return the blue marker to the zero position.

v We repeat this until the red marker reachs a �, the end of the string.

20 October 2008 – p.4/24

A TM for 1p

q1
1 ,Rq0

1 p’,R

q5

0,1,p R

q8

1,L

,L

L0,1

1 R

1 R

1,Rp q9

To q4

q7q6

1’,R1

0’,R0
q4To

1 p’,L

0 R

p R

accept

,L

0,1 R

q4

L0,1,p,p’

L

q10

0,L0’ 1,L1’

R
To q5

1,R

R

1,R1’

0,R0’

1,R1’

p,Rp’

,L

0,R0’

0,1 Rq11 q12

,L
,L

1’,L1

0’,L0

q13

1,L1’

0,L0’

1,L1’

0,1 0’,L
To q4

q q2 3

0,1,p

To qaccept

20 October 2008 – p.5/24

How it works (statesq0 . . .q3)
v Omitted edges are to the reject state:

v Most such edges can never be taken.
v Real rejects occur from states q0, q1 and q9 when reading a �.

v States q0 . . . q3 initialize the computation:
v q0 → q1 writes the left endmarker on the tape.
v q1 → q2 makes sure that there are at least two inputs in the input. If the

machine encounters a � on either of the first two squares, it rejects.
v q2 → q3 marks 2 as the first prime.
v q3 reads to the end of the tape, and then
v q3 → q4 appends a 1 to make up for the leftmost 1 that was overwritten with the

⊢ symbol.

20 October 2008 – p.6/24

How it works (statesq4 . . .q7)
v State q4 moves the head to the left to the square with the “blue” marker. That is

either a 0′, 1′ or ⊢.

v States q4 . . . q7 move the markers to the right:
v q4 → q5 removes the left marker from the previous square.
v q5 → q6 places the left marker on the next square. If that square held the p

symbol, that means we’ve moved p positions and the machine transitions to
state q11 to set the corresponding square at the right marker to 0 (described
below).

v q6 moves to the right until the right marker is found.
If them machine encounters a � first, that means we’re done scanning for the
multiples of the current prime. The machine transitions to state q8 to determine
the next prime to check.

v q6 → q7 and q7 → q8 move the right marker one square to the right. Then the
machine goes back to state q4 to return the head to the left marker and start the
next round.

20 October 2008 – p.7/24

How it works (statesq8 . . .q10)
v States q8 . . . q10 look for the next prime. a multiple of the current prime.

v q8 moves to the left to find the current prime.
v q8 → q9 changes the p symbol to a 1.
v q9 moves to the right to find a square marked with a 1 (indicating a prime).
v q9 → q10 marks that prime with p′.

If no such prime is found, then the last square on the tape must be marked with
a zero (i.e. it is not a prime). The machine encounters a � and rejects.

v q10 moves to the left, clearing the left marker on the way. This means that the
left-marker is on the ⊢ square, leaving the machine ready to eliminate multiples
of the new prime.

20 October 2008 – p.8/24

How it works (statesq11 . . .q13)
v States q11 . . . q13 write a 0 on a square that is a multiple of the current prime.

v q11 → qaccept :
v If the symbol following the square for the prime is a �, then the input string

was 1p where p is the current prime. The machine accepts.
v Otherwise, the machine moves to the right, q11 → q12, to start looking for

the right marker.
v If the right marker is immediately after the prime, the machine move directly

from state q11 to q13. This happens when p = 2 and the right marker is on
the square for 3.

v q12 the machine moves to the right looking for the right marker.
v q12 → q13 the machine moves the right mareer one square to the right.
v q13 → q4 if the next square is either a 0 or a 1, the machine writes a 0 (to

indicate that the square is in a non-prime position) and marks it for the next
round of the scan.

20 October 2008 – p.9/24

A TM that acts like a “real” computer
The tape

Data manipulation

Making the TM programmable

20 October 2008 – p.10/24

The Tape
The tape is of the form

⊢ Ψx0Ψx1Ψ · · ·ΨxnΨ�
∗

where
v Each xi is in L(1∗). If xi = 1j , then xi represents the integer j.

v This unary encoding is inefficient (uses lots of tape), but tape is free ipp p .
v We could describe a machine that used binary (or decimal, etc.) for its

number representations, but that would add extra details to the description
that aren’t critical for our point that we can make a programmable computer.

v Each Ψ is a # symbol followed by a string in {A, B, P}∗.
v The tape has exactly one A, exactly one B and exactly one P .
v The symbols A, B and P mark words that the “program” is currently

manipulating.

20 October 2008 – p.11/24

Operation: insert a 1
v Add states q11, q1#, q1A, q1B , q1P , and q1� with the following transistions:

1 # A B P �

q11 (1, q11) (1, q1#) (1, q1A) (1, q1B) (1, q1P) (1, q1�)

q1# (#, q11) (#, q1#) (#, q1A) (#, q1P) (#, q1P) (#, q1�)

q1A (A, q11) (A, q1#) (A, q1A) (A, q1B) (A, q1P) (A, q1�)

q1B (B, q11) (B, q1#) (B, q1A) (B, q1B) (B, q1P) (B, q1�)

q1P (P, q11) (P, q1#) (P, q1A) (P, q1B) (P, q1P) (P, q1�)

v The entry in row q column c is a tuple of the form (c′, q′). When the machine is in

state q and there is a c on the current tape square, the machine writes a c′ on the

tape, and transitions to state q′ and moves to the rights.

20 October 2008 – p.12/24

Inserting a 1: explanation
v This machine-fragment starts in state q11 at the position where a 1 should be

inserted and ends in state q1� having inserted the one.

v Initially,
v The machine writes a 1,
v Uses its finite state to store the value of the tape symbol that it overwrote, and
v moves one square to the right.

v At each subsequent step
v The machine writes the symbol from the previous square,
v Uses its finite state to store the value of the symbol that was at this square, and
v moves one square to the right.

v When it reaches the end of the tape string (i.e. a �)
v The machine writes the symbol from the previous square and
v moves one square to the right, entering state q1� .
v The rest of the TM can “connect” with state q1� to continue the computation.

20 October 2008 – p.13/24

Deleting a symbol
We add states to:

v Write a � at the current tape position and move to the right.
v Continue moving to the right until we reach another � (the end of the tape

string).
v Use a variation of the “insert a 1” procedure to “insert” another blank on the last

non-blank square of the tape, and go to the left, copying the overwritten
symbols until we reach the � at we wrote at the beginning.

v Now, the symbol that we had wanted to delete is gone, and the string to its right

has been shifted over one tape square.

20 October 2008 – p.14/24

The resetA “instruction”
v Move the A marker to the first # (i.e. have it mark x0).

loop { Move left to the endmarker, ⊢.
Move right two squares (one after the first #).
Insert a A (like inserting a 1 as described above).
Move to the left (from the right end of the tape)
until reaching the previous A.
Delete the previous A (as described above).

}

20 October 2008 – p.15/24

The clrA “instruction”
v Set the word marked by A to 10 (a.k.a. ǫ).

loop { Move left to the endmarker, ⊢.
Move to the right until reaching the A.
Move to the right past the A and any other markers

(i.e. B or P).
if the current symbol is a 1

delete it (as described above).
else exit-loop.

}

20 October 2008 – p.16/24

The incrA “instruction”
v Add one to the word marked by A.

Move left to the endmarker, ⊢.
Move to the right until reaching the A.
Move to the right past the A and any other markers

(i.e. B or P).
Insert a 1 as described above.

20 October 2008 – p.17/24

The addAB “instruction”
v Replace the word marked by A with the sum of the word marked by

A and the word marked by B.

Move left to the endmarker, ⊢.
Move to the right until reaching the B.
Move to the right past the B and any other markers (i.e. A or P).
while the current symbol is a 1 {

Mark the current symbol (i.e. change it to 1′).
Increment the word marked by A (see the incrA instruction).
Move to the 1′.
Unmark it and move one square to the right.
if the current symbol is a #, exit-loop.

}

v Other “ALU instructions” can be implemented in a similar manner.

20 October 2008 – p.18/24

The moveAB “instruction”
v Let xB be the value of the word marked by the B marker. Move A

to mark xxB
.

v For example, if B marks word 5, and A marks word 17, and x5 = 42

and x17 = 2, then executing moveAB will
v Set A to mark word 42.
v Leave B marking word 5.

v The rest of the values on the tape are unchanged.

20 October 2008 – p.19/24

Implementing moveAB
v Move left to the endmarker, ⊢.

Move to the right until reaching the A.
Delete the A.
Move left to the endmarker, ⊢.
Write an A after the first #.
for each 1 in the word marked by B {

Move the A marker one # to the right.
(If there is not such #, append #’s to the end of
the tape string as needed.)

}

v This lets us move the markers to arbitrary locations on the tape – in
other words, it provides memory access.

v Note that by appending #′
s onto the tape as needed, our TM

computer never runs out of memory.

20 October 2008 – p.20/24

Instruction summary
v We now have basic instructions for data manipulation:

v resetA: Move the A marker to word x0.
v clrA: Set the word marked by A to 0.
v incrA: Add one to the word marked by A.
v addAB: Replace the word marked by A with the sum of the words marked by A

and B.

v moveAB: Move the A marker to the word indicated by the word marked by the B

marker.

v We could make similar “instructions” manipulating the word marked
by the B (or P) markers.

v For example, moveAA sets the A marker to the word indicated by the word at the
current position of the A marker.

v If A marks x17, and x17 holds the value 142, then moveAA will set the A marker

to mark word x42.

20 October 2008 – p.21/24

An example
v Copy the word marked by B to x5:

resetA A now marks x0

clrA x0 ← 0

incrA x0 ← 1

incrA x0 ← 2

incrA x0 ← 3

incrA x0 ← 4

incrA x0 ← 5

moveAA A now marks x5

clrA x5 ← 0

addAB x5 ← xB

where xB is the value of the word marked by B.

v But how do we store and execute instructions?

20 October 2008 – p.22/24

A Stored Program TM

p0 p1

p2
R1 R1 pn−1

L

R1

L

R1

L # L

pn−2

n+1To p

RP

L

RP

clrA

L

4

L

resetA

p 5

test

T F

p

n+1
Move the P markerp

n+1To pn+1

one word to the right

p Ton+1ToTo n+1f

To p

p

incrA

RA,B

0

v the P marker is the “program counter.”

v I added instructions for accept and reject.

v The testA instruction implements a branch:
v if the word marked by A is non-zero, then next instruction is executed normally.
v otherwise, the f states provide alternative implementations of each instruction.

20 October 2008 – p.23/24

This week
v Reading

v October 20 (Today): Sipser3.2.
v October 22 (Wednesday): Sipser3.3.

v October 24 (Friday): Sipser4.1.

v Homework
v October 20 (Today): Homework 5 due.

v October 24 (a week from today): Homework 6 due; homework 7 goes out.

20 October 2008 – p.24/24

	Prime Sieve Algorithms
	A TM for $	to ^p$, where p is prime
	Using Markers
	A TM for $	to ^p$
	How it works (states q_0 ldots q_3)
	How it works (states q_4 ldots q_7)
	How it works (states q_8 ldots q_{10})
	How it works (states q_{11} ldots q_{13})
	A TM that acts like a ``real'' computer
	The Tape
	Operation: insert a 1
	Inserting a 1: explanation
	Deleting a symbol
	The inst {resetA} ``instruction''
	The inst {clrA} ``instruction''
	The inst {incrA} ``instruction''
	The inst {addAB} ``instruction''
	The inst {moveAB} ``instruction''
	Implementing inst {moveAB}
	Instruction summary
	An example
	A Stored Program TM
	This week

