Fun with Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

Simple Operations

A Programmable Turing Machine

Prime Sieve Algorithms

```
boolean[] primes(int n) {
    boolean[] b = new boolean[n];
    int p = 2; // current prime
    for(int i = 0; i < n; i++) b[i] = true;
    b[0] = false; b[1] = false;
    while(p < n) {
        for(int i = 2*p; i < n; i += p)
            b[i] = false; // a multiple of p
        for(p++; (p < n) && !b[p]; p++); // find next prime
    }
    return(b);
}</pre>
```

A TM for 1^p, where p **is prime**

Strategy: use tape as a sieve.

- For smallest prime not yet considered, cross-off all multiples of that prime.
- If we cross of the last 1 of the input string, then reject.
- Otherwise, if the last 1 of the input string is the next prime to consider, then accept.
- Example:

Input String	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1 not prime	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
p= 2	0	1	1	\otimes	1	\otimes	1	\otimes	1	\otimes	1	\otimes	1	\otimes	1	\otimes	1 (eliminate multiples of 2
p= 3	0	1	1	0	1	\otimes	1	0	\otimes	0	1	\otimes	1	0	\otimes	0	1	eliminate multiples of 3
p= 5	0	1	1	0	1	0	1	0	0	\otimes	1	0	1	0	\otimes	0	1	eliminate multiples of 5
p= 7	0	1	1	0	1	0	1	0	0	0	1	0	1	\otimes	0	0	1	
p = 11	0	1	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	
p = 13	0	1	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	
p = 17	0	1	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	
accept	0	1	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	

But, the tape head can only move one square at a time.

Image: box Image: box</t

- We'll prepend a left end-marker, ⊢ to the tape. Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
 - We'll initially place the blue marker at the zero position of the tape,
 - and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: How P Image: Image:

- We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
 - We'll initially place the blue marker at the zero position of the tape,
 - and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: Height of the line structure Image: Height of the line

- We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
 - We'll initially place the blue marker at the zero position of the tape,
 - and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: Height of the line line of the line of the line line line of the

We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.

Imagine that we have two markers, a blue one and a red one.

- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: How P Image: Image:

We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.

Imagine that we have two markers, a blue one and a red one.

- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: box Image: box</t

- We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.
- Imagine that we have two markers, a blue one and a red one.
 - We'll initially place the blue marker at the zero position of the tape,
 - and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: Point of the line line line of the line line of the line of the

We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.

Imagine that we have two markers, a blue one and a red one.

- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: Head of the line Image: Head of thead of the line Image: Head of th

We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.

Imagine that we have two markers, a blue one and a red one.

- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: How P Image: Image:

We'll prepend a left end-marker, ⊢ to the tape. Note that this is at the "zero" position for the string.

Imagine that we have two markers, a blue one and a red one.

- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: Point of the line Image: Point of

We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.

Imagine that we have two markers, a blue one and a red one.

- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

Image: box Image: box</t

We'll prepend a left end-marker, ⊢ to the tape.
 Note that this is at the "zero" position for the string.

Imagine that we have two markers, a blue one and a red one.

- and we'll initially place the red marker on the square for the current prime.
- Now, we'll repeatedly move both markers to the right one square at a time.
- When the blue marker reaches the square for the current prime
 - We'll write a 0 on the square for the red marker,
 - and we'll return the blue marker to the zero position.
- We repeat this until the red marker reachs a \Box , the end of the string.

A TM for 1^p

How it works (states $q_0 \dots q_3$)

- Omitted edges are to the reject state:
 - Most such edges can never be taken.
 - Real rejects occur from states q_0 , q_1 and q_9 when reading a \Box .
- States $q_0 \ldots q_3$ initialize the computation:
 - $q_0 \rightarrow q_1$ writes the left endmarker on the tape.
 - $q_1 \rightarrow q_2$ makes sure that there are at least two inputs in the input. If the machine encounters a \Box on either of the first two squares, it rejects.
 - $q_2 \rightarrow q_3$ marks 2 as the first prime.
 - \bullet q_3 reads to the end of the tape, and then
 - $q_3 \rightarrow q_4$ appends a 1 to make up for the leftmost 1 that was overwritten with the \vdash symbol.

How it works (states $q_4 \dots q_7$)

- State q_4 moves the head to the left to the square with the "blue" marker. That is either a 0', 1' or \vdash .
- States $q_4 \ldots q_7$ move the markers to the right:
 - $q_4 \rightarrow q_5$ removes the left marker from the previous square.
 - $q_5 \rightarrow q_6$ places the left marker on the next square. If that square held the p symbol, that means we've moved p positions and the machine transitions to state q_{11} to set the corresponding square at the right marker to 0 (described below).
 - q_6 moves to the right until the right marker is found. If them machine encounters a \Box first, that means we're done scanning for the multiples of the current prime. The machine transitions to state q_8 to determine the next prime to check.
 - $q_6 \rightarrow q_7$ and $q_7 \rightarrow q_8$ move the right marker one square to the right. Then the machine goes back to state q_4 to return the head to the left marker and start the next round.

How it works (states $q_8 \dots q_{10}$)

- States $q_8 \ldots q_{10}$ look for the next prime. a multiple of the current prime.
 - \bullet q_8 moves to the left to find the current prime.
 - $q_8 \rightarrow q_9$ changes the p symbol to a 1.
 - \bullet q_9 moves to the right to find a square marked with a 1 (indicating a prime).
 - $q_9 \rightarrow q_{10}$ marks that prime with p'. If no such prime is found, then the last square on the tape must be marked with a zero (i.e. it is not a prime). The machine encounters a \Box and rejects.
 - q_{10} moves to the left, clearing the left marker on the way. This means that the left-marker is on the \vdash square, leaving the machine ready to eliminate multiples of the new prime.

How it works (states $q_{11} \dots q_{13}$)

- States $q_{11} \dots q_{13}$ write a 0 on a square that is a multiple of the current prime.
 - $q_{11} \rightarrow q_{accept}$:
 - If the symbol following the square for the prime is a □, then the input string was 1^p where p is the current prime. The machine accepts.
 - Otherwise, the machine moves to the right, $q_{11} \rightarrow q_{12}$, to start looking for the right marker.
 - If the right marker is immediately after the prime, the machine move directly from state q_{11} to q_{13} . This happens when p = 2 and the right marker is on the square for 3.
 - q_{12} the machine moves to the right looking for the right marker.
 - $q_{12} \rightarrow q_{13}$ the machine moves the right mareer one square to the right.
 - $q_{13} \rightarrow q_4$ if the next square is either a 0 or a 1, the machine writes a 0 (to indicate that the square is in a non-prime position) and marks it for the next round of the scan.

A TM that acts like a "real" computer

The tape

Data manipulation

Making the TM programmable

The Tape

The tape is of the form

$$\vdash \Psi x_0 \Psi x_1 \Psi \cdots \Psi x_n \Psi \square^*$$

where

- Each x_i is in $L(1^*)$. If $x_i = 1^j$, then x_i represents the integer j.
 - This unary encoding is inefficient (uses lots of tape), but tape is free \odot .
 - We could describe a machine that used binary (or decimal, etc.) for its number representations, but that would add extra details to the description that aren't critical for our point that we can make a programmable computer.
- Each Ψ is a # symbol followed by a string in $\{A, B, P\}^*$.
 - The tape has exactly one A, exactly one B and exactly one P.
 - The symbols A, B and P mark words that the "program" is currently manipulating.

Operation: insert a 1

Add states q_{11} , $q_{1\#}$, q_{1A} , q_{1B} , q_{1P} , and $q_{1\Box}$ with the following transistions:

	1	#	A	В	Р	
q_{11}	$(1, q_{11})$	$(1,q_{1\#})$	$(1,q_{1A})$	$(1,q_{1B})$	$(1, q_{1P})$	$(1,q_{1\square})$
$q_{1\#}$	$(\#, q_{11})$	$(\#, q_{1\#})$	$(\#,q_{1A})$	$(\#,q_{1P})$	$(\#, q_{1P})$	$(\#,q_{1\square})$
q_{1A}	(A, q_{11})	$(A, q_{1\#})$	(A, q_{1A})	(A,q_{1B})	(A, q_{1P})	$(A,q_{1\square})$
q_{1B}	(B, q_{11})	$(B,q_{1\#})$	(B,q_{1A})	(B,q_{1B})	(B,q_{1P})	$(B,q_{1\square})$
q_{1P}	(P, q_{11})	$(P, q_{1\#})$	(P,q_{1A})	(P,q_{1B})	(P,q_{1P})	$(P, q_{1\square})$

The entry in row q column c is a tuple of the form (c', q'). When the machine is in state q and there is a c on the current tape square, the machine writes a c' on the tape, and transitions to state q' and moves to the rights.

Inserting a 1: explanation

- This machine-fragment starts in state q_{11} at the position where a 1 should be inserted and ends in state $q_{1\square}$ having inserted the one.
- Initially,
 - The machine writes a 1,
 - Uses its finite state to store the value of the tape symbol that it overwrote, and
 - moves one square to the right.
 - At each subsequent step
 - The machine writes the symbol from the previous square,
 - Uses its finite state to store the value of the symbol that was at this square, and
 - moves one square to the right.
 - When it reaches the end of the tape string (i.e. a \Box)
 - The machine writes the symbol from the previous square and
 - moves one square to the right, entering state $q_{1\square}$.
 - The rest of the TM can "connect" with state $q_{1\square}$ to continue the computation.

Deleting a symbol

We add states to:

- Write a \Box at the current tape position and move to the right.
- Use a variation of the "insert a 1" procedure to "insert" another blank on the last non-blank square of the tape, and go to the left, copying the overwritten symbols until we reach the
 at we wrote at the beginning.
- Now, the symbol that we had wanted to delete is gone, and the string to its right has been shifted over one tape square.

The resetA "instruction"

• Move the A marker to the first # (i.e. have it mark x_0).

loop { Move left to the endmarker, \vdash . Move right two squares (one after the first #). Insert a A (like inserting a 1 as described above). Move to the left (from the right end of the tape) until reaching the previous A. Delete the previous A (as described above).

The clrA "instruction"

• Set the word marked by A to 1^0 (a.k.a. ϵ).

loop { Move left to the endmarker, ⊢. Move to the right until reaching the A. Move to the right past the A and any other markers (i.e. B or P). if the current symbol is a 1 delete it (as described above). else exit-loop.

The incrA "instruction"

• Add one to the word marked by *A*.

Move left to the endmarker, ⊢.
Move to the right until reaching the A.
Move to the right past the A and any other markers (i.e. B or P).
Insert a 1 as described above.

The addAB "instruction"

Replace the word marked by A with the sum of the word marked by A and the word marked by B.

Move left to the endmarker, \vdash . Move to the right until reaching the *B*. Move to the right past the *B* and any other markers (i.e. *A* or *P*). while the current symbol is a 1 { Mark the current symbol (i.e. change it to 1'). Increment the word marked by *A* (see the incrA instruction). Move to the 1'. Unmark it and move one square to the right. if the current symbol is a #, exit-loop.

}

Other "ALU instructions" can be implemented in a similar manner.

The moveAB "instruction"

- Let x_B be the value of the word marked by the *B* marker. Move *A* to mark x_{x_B} .
- For example, if B marks word 5, and A marks word 17, and $x_5 = 42$ and $x_17 = 2$, then executing moveAB will
 - Set A to mark word 42.
 - Leave B marking word 5.
 - The rest of the values on the tape are unchanged.

Implementing moveAB

Move left to the endmarker, ⊢.
Move to the right until reaching the *A*.
Delete the *A*.
Move left to the endmarker, ⊢.
Write an *A* after the first #.
for each 1 in the word marked by *B* {

Move the *A* marker one # to the right.
(If there is not such #, append #'s to the end of the tape string as needed.)

- This lets us move the markers to arbitrary locations on the tape in other words, it provides memory access.
- Note that by appending #'s onto the tape as needed, our TM computer never runs out of memory.

Instruction summary

- We now have basic instructions for data manipulation:
 - resetA: Move the A marker to word x_0 .
 - clrA: Set the word marked by A to 0.
 - incrA: Add one to the word marked by A.
 - addAB: Replace the word marked by A with the sum of the words marked by A and B.
 - moveAB: Move the A marker to the word indicated by the word marked by the B marker.
- We could make similar "instructions" manipulating the word marked by the B (or P) markers.
 - For example, moveAA sets the A marker to the word indicated by the word at the current position of the A marker.
 - If A marks x_{17} , and x_{17} holds the value 1^{42} , then moveAA will set the A marker to mark word x_{42} .

An example

• Copy the word marked by B to x_5 :

resetA	A now marks x_0
clrA	$x_0 \leftarrow 0$
incrA	$x_0 \leftarrow 1$
incrA	$x_0 \leftarrow 2$
incrA	$x_0 \leftarrow 3$
incrA	$x_0 \leftarrow 4$
incrA	$x_0 \leftarrow 5$
moveAA	A now marks x_5
clrA	$x_5 \leftarrow 0$
addAB	$x_5 \leftarrow x_B$

where x_B is the value of the word marked by B.

But how do we store and execute instructions?

A Stored Program TM

- the P marker is the "program counter."
- I added instructions for accept and reject.
- The testA instruction implements a branch:

If the word marked by A is non-zero, then next instruction is executed normally.

• otherwise, the f states provide alternative implementations of each instruction.

This week

Reading

- October 20 (Today): *Sipser* 3.2.
- October 22 (Wednesday): Sipser3.3.
- October 24 (Friday): Sipser4.1.

Homework

- October 20 (Today): Homework 5 due.
- October 24 (a week from today): Homework 6 due; homework 7 goes out.