Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

A simple example

Mathematical definition

More examples

Background

- A DFA or NFA has a fixed set of states.
 - Thus, a DFA can only remember a bounded amount about its input no matter how long the input is.
 - We used this to show that there are languages that cannot be recognized by any DFA.
- A PDA has a finite controller and an unbounded stack.
 - The stack enables the PDA to store arbitrarily large amounts of data.
 - But, it can only access the top of stack:
 - To reach data that is further down, it must "pop" the intervening data items off the stack.
 - The finite controller can only remember a bounded amount about the stuff that has been popped of.
 - This leads to the limitations of PDAs there are langauges that cannot be recognized by any PDA.

Turing Machines

- A Turing Machine has a (deterministic) finite state controller, and ...
- a tape that it can read and write.
 - The tape is unbounded to the right.
 - The tape initially holds the input string.
 - The tape beyond the input string is initially filled with an infinite string of blanks,
- the finite state controller has two special states:
 - q_{accept} : If the machine ever reaches this state, it halts and accepts the stringg.
 - q_{reject} : If the machine ever reaches this state, it halts and rejects the string.
 - If M is a Turing Machine, then the language recognized by M is written L(M) and is the set of all strings for which the TM reaches the q_{accept} state.
- at each step:
 - M reads the symbol at its current position on the tape.
 - Based on that symbol and it current state, the machine:
 - Writes a symbol at the current position;
 - Transitions to a new state; and
 - Moves one square to the left or right.

Turing Machines (diagram)

My mouse isn't working right. You can draw it here.

All strings that contain three a's

- Let $\Sigma = \{a, b\}$.
- M has six states:
 - \mathbf{P}_{q_0} is the initial state: The machine has read 0 a's.
 - \bullet q_1, q_2 and q_3 : the machine has read 1, 2 or 3 a's respectively.
 - q_{accept} : the machine reaches the end of the string after reading 3 a's.
 - q_{reject}: the machine has read more than 3 a's or reaches the end of the string having read fewer than 3 a's.

The transitions:

current	current	next	next	move
state	tape symbol	state	tape symbol	head
q_0	a	q_1	a	right
q_0	b	q_0	b	right
q_0		q_{reject}		right
:	:	:	:	:
•	•	•	•	•

All strings that contain three a's

- M has six states:
- The transitions:

current	current	next	next	move
state	tape symbol	state	tape symbol	head
q_0	a	q_1	a	right
q_0	b	q_0	b	right
q_0		q_{reject}		right
q_1	a	q_2	a	right
q_1	b	q_1	b	right
q_1		q_{reject}		right
q_2	a	q_3	a	right
q_2	b	q_2	b	right
q_2		q_{reject}		right
q_3	a	q_{reject}	a	right
q_3	b	q_3	b	right
q_3		q_{accept}		right

All strings that contain three a's

You can draw the diagram here.

An Equivalent Program

```
state = q_0;
while(true) {
    switch(state) {
         case q_0:
               switch(currentSymbol) {
                   case a:
                        write(a); state = q_1; move(right); break;
                   case b:
                        write(b); state = q_0; move(right); break;
                   case \Box:
                        write(\Box); state = q_{reject}; move(right); break;
                    }
         case q_1: ...
         case q_2: ...
         case q_{accept}: accept();
         case q_{reject}: reject();
     }
}
```

$a^n b^n c^n$: Strategy

- We can't count the number of a's, b's or c's with our finite control (you can't do it with Java int's long's either (why?)).
- We can zig-zag back and forth across the tape, matching up a's, b's and c's.
- Plan:
 - If the tape starts with an a, cross it off
 - \triangleright scan to the right until we find a matching b, and cross it off.
 - \triangleright continue scanning to the right until we find a matching c, and cross it off
 - Return to the beginning of the tape, and repeat the procedure.

• We're done when...

- We cross of every symbol then accept :
- lacksim We fail to find a m b or m c when scanning to the right reject \bigotimes .
- We still have some b's or c's left over after reading the last a reject \bigotimes .

Note:

When we return to the beginning of the a's, we need to be able to distinguiah having read all of the input from not having enough a's.

Solution: we'll use a different symbol for crossing off a's.

A program for $a^n b^n c^n$

```
while(true) {
    if(currentSymbol == \Box) accept();
    if(currentSymbol == a) {
         write(A); move(right)
         while(currentSymbol \in \{a, B\}) move(right);
         if(currentSymbol == b) {
              write(B); move(right);
         } else reject();
         while(currentSymbol \in \{b, C\}) move(right);
         if(currentSymbol == c) {
              write(C); move(left);
         } else reject();
         while(currentSymbol != A) move(left);
         move(right);
     } else if(currentSymbol \in \{B, C\}) move(right);
    else reject();
}
```

Compiling to a Turing Machine

q_0 :	while(true) {		
q_0 :	if(currentSymbol == \Box) {		
q_{accept} :	accept();		
q_0 :	$\}$ else if(currentSymbol == a) {		
q_0 :	write(A); move(right)		
q_1 :	while(currentSymbol \in {a, B}) move(right);		
q_1 :	if(currentSymbol == b) $\{$		
q_1 :	write(B); move(right);		
q_1 :	} else		
q_{reject} :	reject();		
q_2 :	while(currentSymbol $\in \{ ext{b}, ext{C}\}$) move(right);		
q_2 :	if(currentSymbol == c) {		
q_2 :	write(C); move(left);		
q_2 :	} else		
q_{reject} :	reject();		
q_3 :	while(currentSymbol != A) move(left);		
q_3 :	move(right);		
q_0 :	$\}$ else if(currentSymbol \in {B, C}) {		
q_0 :	move(right);		
q_0 :	} else reject();		
	}		

A Turing Machine for $a^n b^n c^n$

- Input alphabet: $\Sigma = \{a, b, c\}$.
- States: $Q = \{q_0, q_1, q_2, q_3, q_4, q_{accept}, q_{reject}\}.$
- Tape alphabet: $\Gamma = \{a, b, c, A, B, C, \Box\}$.

Transitions:

$$\begin{array}{ll} q_0: & (q_0, \mathtt{a}) \rightarrow (q_1, \mathtt{A}, \mathsf{right}) & (q_0, \Box) \rightarrow (q_{accept}, \Box, \mathsf{right}) \\ & (q_0, \{\mathtt{B}, \mathtt{C}\}) \rightarrow (q_0, \bullet, \mathsf{right}) & (q_0, other) \rightarrow (q_{reject}, \bullet, \mathsf{right}) \\ q_1: & (q_1, \{\mathtt{a}, \mathtt{B}\}) \rightarrow (q_1, \bullet, \mathsf{right}) & (q_1, \mathtt{b}) \rightarrow (q_2, \mathtt{B}, \mathsf{right}) \\ & (q_1, other) \rightarrow (q_{reject}, \bullet, \mathsf{right}) & (q_2, \mathtt{c}) \rightarrow (q_3, \mathtt{C}, \mathsf{left}) \\ & (q_2, other) \rightarrow (q_{reject}, \bullet, \mathsf{right}) & (q_3, \mathtt{A}) \rightarrow (q_0, \bullet, \mathsf{right}) \end{array}$$

Writing $a \bullet$ on the tape means writing the same symbol that was read.

A Turing Machine for $a^n b^n c^n$

To avoid clutter, I've omitted edges for transitions that can never occur. These are labeled "other" in the table on the previous slide.

step	state	tape
0	q_0	aaabbbccc ^{[]*}
1	q_1	Aaabbbccc ^{[]*}
2	q_1	Aaabbbccc ^{[]*}
3	q_1	Aaabbbccc🗆*
4	q_2	AaaBbbccc🗆*
5	q_2	AaaBbbccc□*
6	q_2	AaaBbbccc□*
7	q_3	AaaBbbCcc□*
8	q_3	AaaBbbCcc□*
9	q_3	AaaBbbCcc□*
10	q_3	AaaBbbCcc□*
11	q_3	AaaBbbCcc□*
12	q_3	AaaBbbCcc□*
13	q_0	AaaBbbCcc□*

The purple symbol indicates the current tape head position.

step	state	tape	
13	q_0	AaaBbbCcc□*	
14	q_1	AAaBbbCcc□*	
15	q_1	AAaBbbCcc□*	
16	q_1	AAaBbbCcc□*	
17	q_2	AAaBB <mark>b</mark> Ccc□*	
18	q_2	AAaBBbCcc□*	
19	q_2	AAaBBbCcc□*	
20	q_3	AAaBBbCCc□*	
21	q_3	AAaBBbCCc□*	
22	q_3	AAaBBbCCc□*	
23	q_3	AAaBBbCCc□*	
24	q_3	AAaBBbCCc□*	
25	q_3	AAaBBbCCc□*	
26	q_0	AAaBBbCCc□*	

step	state	tape
26	q_0	AAaBBbCCc□*
27	q_1	AAABBbCCc□*
28	q_1	AAABBbCCc□*
29	q_1	AAABB <mark>b</mark> CCc□*
30	q_2	AAABBBCCc□*
31	q_2	AAABBBCCc□*
32	q_2	AAABBBCCc ¹ *
33	q_3	AAABBBCCC *
34	q_3	AAABBBCCC ¹ *
35	q_3	AAABBBCCC *
36	q_3	AAABBBCCC *
37	q_3	AAABBBCCC ^{_*}
38	q_3	AAABBBCCC *
39	q_0	AAABBBCCC ^{_*}

	i i i i i i i i i i i i i i i i i i i	
step	state	tape
39	q_0	AAABBBCCC *
40	q_0	AAABBBCCC *
41	q_0	AAABBBCCC *
42	q_0	AAABBBCCC *
43	q_0	AAABBBCCC *
44	q_0	AAABBBCCC ^{_*}
45	q_0	
47	q_{accept}	

Formal Definition of Turing Machines

- A Turing machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ where
 - \bigcirc Q is a finite set, the states.
 - Σ is a finite set, the input alphabet.
 - $\Gamma \supset \Sigma$ is a finite set, the tape alphabet.
 - $\delta: (Q \times \Gamma) \to (Q \times \Gamma \times \{L, R\})$ is the transition function.
 - $q_0 \in Q$ is the initial state.
 - $q_{accept} \in Q$ is the accepting state.
 - $q_{reject} \in Q$ is the rejecting state.

Turing Machine Configurations

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ be a Turing machine.
- A configuration consists of
 - A state, q, the current state of the Turing Machine.
 - A string w, the tape currently holds $w \square^*$.
 - A position: where the read/write head is along the tape.
- We write uqv where $u \in \Gamma^*$ and $v \in \Gamma^*$ to indicate that a Turing machine in in a configuration where
 - The controller is in state q.
 - The tape contents are $uv \Box^*$.
 - The read/write head is positioned at the first symbol of v.

Turing Machine Moves

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ be a Turing machine.
- Let q be a state in Q {q_{accept}, q_{reject}}. M can move from configuration uqcv to configuration u'q'v' for some u, v, u', v' ∈ Γ*, q, q' ∈ Q, and c ∈ Γ, iff
 - There is some d such that $\delta(q,c) = (q',d,R)$, and
 - $lacev_{} v
 eq\epsilon$ and u'=ud, and v'=v; or
 - $lacksim v=\epsilon$ and u'=ud, and $v'=\Box$; or
 - For the term of t
 - u = u'b and v' = bdv; or

$$u = u' = \epsilon$$
 and $v' = dv$.

• If C_1 and C_2 are configurations and M can move from C_1 to C_2 , then we write $C_1 \xrightarrow{M} C_2$. If M is obvious from context, we write $C_1 \to C_2$.

Turing Machine Moves

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ be a Turing machine.
- Let q be a state in Q {q_{accept}, q_{reject}}. M can move from configuration uqcv to configuration u'q'v' for some u, v, u', v' ∈ Γ*, q, q' ∈ Q, and c ∈ Γ, iff ...
- If C_1 and C_2 are configurations and M can move from C_1 to C_2 , then we write $C_1 \xrightarrow{M} C_2$. If M is obvious from context, we write $C_1 \to C_2$.
- If C = uqv is a configuration with q = q_{accept}, we say that C is an accepting configuration.
 Likewise if q = q_{reject}, we say that C is a rejecting configuration.
- Accepting and rejecting configuration are halting configurations: the Turing machine makes no further moves from such a configuration.

Turing Machine Acceptance

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ be a Turing machine.
- M accepts input w iff there is a set of configurations $C_0, C_1, \ldots C_i$ such that
 - $C_0 = q_0 w;$
 - For all j in $0 \dots i 1$, $C_j \xrightarrow{M} C_{j-1}$;
 - C_i is an accepting configuration.
- M rejects w iff there is a set of configurations that ends in a rejecting configuration.
- M loops on input w if M neither accepts nor rejects w. This means that w executes forever on input w.

Languages recognized by TMs

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ be a Turing machine.
- M recognizes language A iff
 - M accepts w iff $w \in A$.
 - If $w \notin A$, then M may either reject or loop on input w.
- M decides language A iff
 - If $w \in A$ then M accepts w; and
 - if $w \notin A$ then M rejects w.
 - (In other words, M never loops.)

Turing Languages

- A language is Turing recognizable iff there is some Turing machine that recognizes it (such a Turing machine may loop).
- A language is Turing decidable iff there is some Turing machine that decides it (i.e. no looping).
- Every Turing decidable language is Turing recognizable, but
- We will show
 - there are Turing recognizable languages that are not Turing decidable (next week)
 - there are lanuages that not even Turing recognizable (later).

This coming week

Reading

- October 17 (today): *Sipser* 3.1.
- October 20 (Monday): *Sipser* 3.2.
- October 22 (Wednesday): *Sipser* 3.3.
- October 24 (a week from today): *Sipser*4.1.

Homework

- October 17 (today): Homework 4 due; homework 6 goes out.
- October 20 (Monday): Homework 5 due.
- October 24 (a week from today): Homework 6 due; homework 7 goes out.