Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

- A simple example
- Mathematical definition
- More examples

Background

- A DFA or NFA has a fixed set of states.
- Thus, a DFA can only remember a bounded amount about its input no matter how long the input is.
- We used this to show that there are languages that cannot be recognized by any DFA.
- A PDA has a finite controller and an unbounded stack.
- The stack enables the PDA to store arbitrarily large amounts of data.
- But, it can only access the top of stack:
- To reach data that is further down, it must "pop" the intervening data items off the stack.
- The finite controller can only remember a bounded amount about the stuff that has been popped of.
- This leads to the limitations of PDAs - there are langauges that cannot be recognized by any PDA.

Turing Machines

- A Turing Machine has a (deterministic) finite state controller, and ...
- a tape that it can read and write.
- The tape is unbounded to the right.
- The tape initially holds the input string.
- The tape beyond the input string is initially filled with an infinite string of blanks, \square.
- the finite state controller has two special states:
$q_{\text {accept }}$: If the machine ever reaches this state, it halts and accepts the stringg.
- $q_{r e j e c t}$: If the machine ever reaches this state, it halts and rejects the string.
- If M is a Turing Machine, then the language recognized by M is written $L(M)$ and is the set of all strings for which the TM reaches the $q_{\text {accept }}$ state.
- at each step:
- M reads the symbol at its current position on the tape.
- Based on that symbol and it current state, the machine:
- Writes a symbol at the current position;
- Transitions to a new state; and
- Moves one square to the left or right.

Turing Machines (diagram)

My mouse isn't working right. You can draw it here.

All strings that contain three a's

- Let $\Sigma=\{a, b\}$.
- M has six states:
q_{0} is the initial state: The machine has read 0 a's.
- q_{1}, q_{2} and q_{3} : the machine has read 1,2 or 3 a's respectively.
$q_{\text {accept }}$: the machine reaches the end of the string after reading 3 a's.
- $q_{\text {reject }}$: the machine has read more than 3 a's or reaches the end of the string having read fewer than 3 a's.
- The transitions:

current state	current tape symbol	next state	next tape symbol	move head
q_{0}	a	q_{1}	a	right
q_{0}	b	q_{0}	b	right
q_{0}	\square	$q_{\text {reject }}$	\square	right
\vdots	\vdots	\vdots	\vdots	\vdots

All strings that contain three a's

- M has six states:
- The transitions:

current state	current tape symbol	next state	next tape symbol	move head							
q_{0}	a	q_{1}	a	right							
q_{0}	b	q_{0}	b	right							
q_{0}	\square	$q_{\text {reject }}$	\square	right	$	$	q_{1}	a	q_{2}	a	right
:---:	:---:	:---:	:---:	:---:							
q_{1}	b	q_{1}	b	right							
q_{1}	\square	$q_{\text {reject }}$	\square	right							
q_{2}	a	q_{3}	a	right							
q_{2}	b	q_{2}	b	right							
q_{2}	\square	$q_{\text {reject }}$	\square	right							
q_{3}	a	$q_{\text {reject }}$	a	right							
q_{3}	b	q_{3}	b	right							
q_{3}	\square	$q_{a c c e p t}$	\square	right							

All strings that contain three a's

You can draw the diagram here.

An Equivalent Program

```
state = q0;
while(true) {
    switch(state) {
        case }\mp@subsup{q}{0}{}\mathrm{ :
        switch(currentSymbol) {
        case a:
            write(a); state = q1; move(right); break;
            case b:
```



```
            case }
                write(\square); state = q}\mp@subsup{q}{\mathrm{ reject }}{};\mathrm{ move(right); break;
                }
            case q}\mp@subsup{q}{1}{\prime}:.
            case q2: ...
            case qaccept: accept();
            case }\mp@subsup{q}{\mathrm{ reject }}{}:\mathrm{ reject();
    }
}
```


$\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n}$: Strategy

- We can't count the number of a's, b's or c's with our finite control (you can't do it with Java int's long's either (why?)).
- We can zig-zag back and forth across the tape, matching up a's, b's and c's.
- Plan:
- If the tape starts with an a, cross it off
- scan to the right until we find a matching b , and cross it off.
- continue scanning to the right until we find a matching c, and cross it off
- Return to the beginning of the tape, and repeat the procedure.

We're done when...

- We cross of every symbol - then accept \because.
- We fail to find a b or c when scanning to the right - reject $\because \dot{\circ}$.
- We still have some b's or c's left over after reading the last a - reject \because).
- Note:
- When we return to the beginning of the a's, we need to be able to distinguiah having read all of the input from not having enough a's.
- Solution: we'll use a different symbol for crossing off a's.

A program for $\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n}$

```
while(true) {
    if(currentSymbol == \square) accept();
    if(currentSymbol == a) {
        write(A); move(right)
        while(currentSymbol }\in{a,B}) move(right)
        if(currentSymbol == b) {
            write(B); move(right);
    } else reject();
    while(currentSymbol }\in{\textrm{b},\textrm{C}})\mathrm{ move(right);
    if(currentSymbol == c) {
            write(C); move(left);
    } else reject();
    while(currentSymbol != A) move(left);
    move(right);
    } else if(currentSymbol }\in{B,C}) move(right)
    else reject();
}
```


Compiling to a Turing Machine

```
q0: while(true) {
    if(currentSymbol == \square) {
        accept();
    } else if(currentSymbol== a) {
        write(A); move(right)
    while(currentSymbol }\in{a,B}) move(right)
    if(currentSymbol == b) {
        write(B); move(right);
        } else
            reject();
        while(currentSymbol }\in{b,C}) move(right)
        if(currentSymbol == c) {
            write(C); move(left);
        } else
            reject();
        while(currentSymbol != A) move(left);
        move(right);
    } else if(currentSymbol }\in{B,C})
        move(right);
    } else reject();
```


A Turing Machine for $\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n}$

- Input alphabet: $\Sigma=\{a, b, c\}$.
- States: $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{\text {accept }}, q_{\text {reject }}\right\}$.
- Tape alphabet: $\Gamma=\{a, b, c, A, B, c, \square\}$.
- Transitions:

$$
\begin{array}{rll}
q_{0}: & \left(q_{0}, \mathrm{a}\right) \rightarrow\left(q_{1}, \mathrm{~A}, \text { right }\right) & \left(q_{0}, \square\right) \rightarrow\left(q_{\text {accept }}, \square, \text { right }\right) \\
q_{1}: & \left(q_{0},\{\mathrm{~B}, \mathrm{C}\}\right) \rightarrow\left(q_{0}, \bullet, \text { right }\right) & \left(q_{0}, \text { other }\right) \rightarrow\left(q_{\text {reject }}, \bullet, \text { right }\right) \\
\left.q_{2},\{\mathrm{a}, \mathrm{~B}\}\right) \rightarrow\left(q_{1}, \bullet, \text { right }\right) & \left(q_{1}, \mathrm{~b}\right) \rightarrow\left(q_{2}, \mathrm{~B}, \text { right }\right) \\
& \left(q_{1}, \text { other }\right) \rightarrow\left(q_{\text {reject }}, \bullet, \text { right }\right) & \\
\left(q_{2},\{\mathrm{~b}, \mathrm{C}\}\right) \rightarrow\left(q_{2}, \bullet, \text { right }\right) & \left(q_{2}, \mathrm{c}\right) \rightarrow\left(q_{3}, \mathrm{C}, \text { left }\right) \\
q_{3}: & \left(q_{2}, \text { other }\right) \rightarrow\left(q_{\text {reject }}, \bullet, \text { right }\right) & \\
\hline\left(q_{3}, \Gamma-\{\mathrm{A}\} \rightarrow\left(q_{3}, \bullet, \text { left }\right)\right. & \left(q_{3}, \mathrm{~A}\right) \rightarrow\left(q_{0}, \bullet, \text { right }\right)
\end{array}
$$

Writing a \bullet on the tape means writing the same symbol that was read.

A Turing Machine for $\mathbf{a}^{n} \mathbf{b}^{n} \mathbf{c}^{n}$

To avoid clutter, l've omitted edges for transitions that can never occur. These are labeled "other" in the table on the previous slide.

An Accepting Run

step	state	tape	
0	q_{0}	aaa.b.b.bccc \square^{*}	The purple symbol
1	q_{1}	Aa a.b.b.b ccc \square^{*}	indicates the current
2	q_{1}	Aa ab.b.b ccc \square^{*}	tape head position.
3	q_{1}	Aa a.b.b.b ccc \square^{*}	
4	q_{2}	AaaBbbccc \square^{*}	
5	q_{2}	AaaBb.bccc \square^{*}	
6	q_{2}	AaaB.b.bccc \square^{*}	
7	q_{3}	AaaB.b.bCcc \square *	
8	q_{3}	Aa.B.b.bCcc \square *	
9	$q 3$	AaaB.b.bCcc \square *	
10	q_{3}	AaaB.b.bCcc \square *	
11	q_{3}	AaaB.b.bCcc \square *	
12	q_{3}	Aa.aBb.bCcc \square *	
13	q_{0}	AaaBb.bCcc \square^{*}	

An Accepting Run

step	state	tape
13	q_{0}	AaaBb.bccc \square^{*}
14	q_{1}	AAaBb.bccc \square^{*}
15	q_{1}	AAaBb.bCcc \square *
16	q_{1}	AAaBb.bccc \square^{*}
17	q_{2}	AAaBB.bCcc \square^{*}
18	q_{2}	AAaBBbCcc \square^{*}
19	q_{2}	AAaBB.bCcc \square^{*}
20	q3	AAaBB.bccc \square^{*}
21	q_{3}	AAaBB.bccc \square^{*}
22	q_{3}	AAaBBbccc \square^{*}
23	q_{3}	AAaBB.bCCc \square^{*}
24	q_{3}	AAaBB.bccc \square^{*}
25	q_{3}	AAaBBbccc \square^{*}
26	q_{0}	AAaBB.bCCc \square^{*}

An Accepting Run

step	state	tape
26	q_{0}	AAaBB.bCCc \square *
27	q_{1}	AAABBbCCc \square *
28	q_{1}	AAABBbCCc \square *
29	q_{1}	AAABBbCCc \square *
30	q_{2}	AAABBBCCc \square *
31	q_{2}	AAABBBCCc \square *
32	q_{2}	AAABBBCCc \square *
33	q_{3}	AAABBBCCC \square^{*}
34	q_{3}	AAABBBCCC \square^{*}
35	q_{3}	AAABBBCCC \square *
36	q_{3}	AAABBBCCC \square^{*}
37	q_{3}	AAABBBCCC \square^{*}
38	q_{3}	AAABBBCCC \square^{*}
39	q_{0}	AAABBBCCC \square *

An Accepting Run

step	state	tape
39	q_{0}	AAABBBCCC \square^{*}
40	q_{0}	AAABBBCCC \square^{*}
41	q_{0}	AAABBBCCC \square^{*}
42	q_{0}	AAABBBCCC \square^{*}
43	q_{0}	AAABBBCCC \square^{*}
44	q_{0}	AAABBBCCC \square^{*}
45	q_{0}	AAABBBCCC $\square \square^{*}$
47	$q_{\text {accept }}$	AAABBBCCC $\square \square \square^{*}$

Formal Definition of Turing Machines

- A Turing machine is a 7-tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c e p t}, q_{\text {reject }}\right)$ where
- Q is a finite set, the states.
- Σ is a finite set, the input alphabet.
- $\Gamma \supset \Sigma$ is a finite set, the tape alphabet.
$\delta:(Q \times \Gamma) \rightarrow(Q \times \Gamma \times\{L, R\})$ is the transition function.
$q_{0} \in Q$ is the initial state.
$q_{\text {accept }} \in Q$ is the accepting state.
$q_{\text {reject }} \in Q$ is the rejecting state.

Turing Machine Configurations

- Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a Turing machine.
- A configuration consists of

A state, q, the current state of the Turing Machine.
A string w, the tape currently holds $w \square^{*}$.

- A position: where the read/write head is along the tape.
- We write $u q v$ where $u \in \Gamma^{*}$ and $v \in \Gamma^{*}$ to indicate that a Turing machine in in a configuration where
- The controller is in state q.
- The tape contents are $u v \square$.

The read/write head is positioned at the first symbol of v.

Turing Machine Moves

- Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a Turing machine.
- Let q be a state in $Q-\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$. M can move from configuration $u q c v$ to configuration $u^{\prime} q^{\prime} v^{\prime}$ for some $u, v, u^{\prime}, v^{\prime} \in \Gamma^{*}$, $q, q^{\prime} \in Q$, and $c \in \Gamma$, iff
There is some d such that $\delta(q, c)=\left(q^{\prime}, d, R\right)$, and
- $v \neq \epsilon$ and $u^{\prime}=u d$, and $v^{\prime}=v$; or
- $v=\epsilon$ and $u^{\prime}=u d$, and $v^{\prime}=\square$; or
- There is some d such that $\delta(q, c)=\left(q^{\prime}, d, L\right)$, and
- $u=u^{\prime} b$ and $v^{\prime}=b d v$; or
- $u=u^{\prime}=\epsilon$ and $v^{\prime}=d v$.
- If C_{1} and C_{2} are configurations and M can move from C_{1} to C_{2}, then we write $C_{1} \xrightarrow{M} C_{2}$. If M is obvious from context, we write $C_{1} \rightarrow C_{2}$.

Turing Machine Moves

- Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a Turing machine.
- Let q be a state in $Q-\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$. M can move from configuration $u q c v$ to configuration $u^{\prime} q^{\prime} v^{\prime}$ for some $u, v, u^{\prime}, v^{\prime} \in \Gamma^{*}$, $q, q^{\prime} \in Q$, and $c \in \Gamma$, iff \ldots
- If C_{1} and C_{2} are configurations and M can move from C_{1} to C_{2}, then we write $C_{1} \xrightarrow{M} C_{2}$. If M is obvious from context, we write $C_{1} \rightarrow C_{2}$.
- If $C=u q v$ is a configuration with $q=q_{\text {accept }}$, we say that C is an accepting configuration.
Likewise if $q=q_{\text {reject }}$, we say that C is a rejecting configuration.
- Accepting and rejecting configuration are halting configurations: the Turing machine makes no further moves from such a configuration.

Turing Machine Acceptance

- Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a Turing machine.
- M accepts input w iff there is a set of configurations $C_{0}, C_{1}, \ldots C_{i}$ such that
- $C_{0}=q_{0} w$;
- For all j in $0 \ldots i-1, C_{j} \xrightarrow{M} C_{j-1}$;
- C_{i} is an accepting configuration.
- M rejects w iff there is a set of configurations that ends in a rejecting configuration.
- M loops on input w if M neither accepts nor rejects w. This means that w executes forever on input w.

Languages recognized by TMs

- Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a Turing machine.
- M recognizes language A iff
- M accepts w iff $w \in A$.
- If $w \notin A$, then M may either reject or loop on input w.
- M decides language A iff
- If $w \in A$ then M accepts w; and
- if $w \notin A$ then M rejects w.
- (In other words, M never loops.)

Turing Languages

- A language is Turing recognizable iff there is some Turing machine that recognizes it (such a Turing machine may loop).
- A language is Turing decidable iff there is some Turing machine that decides it (i.e. no looping).
- Every Turing decidable language is Turing recognizable, but
- We will show
there are Turing recognizable languages that are not Turing decidable (next week)
there are lanuages that not even Turing recognizable (later).

This coming week

- Reading
- October 17 (today): Sipser3.1.
- October 20 (Monday): Sipser3.2.

October 22 (Wednesday): Sipser3.3.

- October 24 (a week from today): Sipser4.1.
- Homework

October 17 (today): Homework 4 due; homework 6 goes out.

- October 20 (Monday): Homework 5 due.

October 24 (a week from today): Homework 6 due; homework 7 goes out.

