
Turing Machines
Mark Greenstreet, CpSc 421, Term 1, 2008/09

v A simple example

v Mathematical definition

v More examples

17 October 2008 – p.1/19



Background
v A DFA or NFA has a fixed set of states.

v Thus, a DFA can only remember a bounded amount about its input no matter
how long the input is.

v We used this to show that there are languages that cannot be recognized by
any DFA.

v A PDA has a finite controller and an unbounded stack.
v The stack enables the PDA to store arbitrarily large amounts of data.
v But, it can only access the top of stack:

v To reach data that is further down, it must “pop” the intervening data items
off the stack.

v The finite controller can only remember a bounded amount about the stuff
that has been popped of.

v This leads to the limitations of PDAs – there are langauges that cannot be
recognized by any PDA.

17 October 2008 – p.2/19



Turing Machines
v A Turing Machine has a (deterministic) finite state controller, and . . .

v a tape that it can read and write.
v The tape is unbounded to the right.
v The tape initially holds the input string.
v The tape beyond the input string is initially filled with an infinite string of blanks,

�.

v the finite state controller has two special states:
v qaccept : If the machine ever reaches this state, it halts and accepts the stringg.
v qreject : If the machine ever reaches this state, it halts and rejects the string.
v If M is a Turing Machine, then the language recognized by M is written L(M)

and is the set of all strings for which the TM reaches the qaccept state.

v at each step:
v M reads the symbol at its current position on the tape.
v Based on that symbol and it current state, the machine:

v Writes a symbol at the current position;
v Transitions to a new state; and
v Moves one square to the left or right. 17 October 2008 – p.3/19



Turing Machines (diagram)
My mouse isn’t working right. You can draw it here.

17 October 2008 – p.4/19



All strings that contain three a’s
v Let Σ = {a,b}.

v M has six states:
v q0 is the initial state: The machine has read 0 a’s.
v q1, q2 and q3: the machine has read 1, 2 or 3 a’s respectively.
v qaccept : the machine reaches the end of the string after reading 3 a’s.
v qreject : the machine has read more than 3 a’s or reaches the end of the string

having read fewer than 3 a’s.

v The transitions:

current current next next move

state tape symbol state tape symbol head

q0 a q1 a right

q0 b q0 b right

q0 � qreject � right
...

...
...

...
...

17 October 2008 – p.5/19



All strings that contain three a’s
v M has six states:

v The transitions:

current current next next move

state tape symbol state tape symbol head

q0 a q1 a right

q0 b q0 b right

q0 � qreject � right

q1 a q2 a right

q1 b q1 b right

q1 � qreject � right

q2 a q3 a right

q2 b q2 b right

q2 � qreject � right

q3 a qreject a right

q3 b q3 b right

q3 � qaccept � right

17 October 2008 – p.5/19



All strings that contain three a’s
You can draw the diagram here.

17 October 2008 – p.6/19



An Equivalent Program

state = q0;

while(true) {

switch(state) {

case q0:

switch(currentSymbol) {

case a:

write(a); state = q1; move(right); break;

case b:

write(b); state = q0; move(right); break;

case �:

write(�); state = qreject ; move(right); break;

}

case q1: . . .

case q2: . . .

case qaccept : accept();

case qreject : reject();

}

}

17 October 2008 – p.7/19



anbncn: Strategy
v We can’t count the number of a’s, b’s or c’s with our finite control

(you can’t do it with Java int’s long’s either (why?)).

v We can zig-zag back and forth across the tape, matching up a’s,
b’s and c’s.

v Plan:
v If the tape starts with an a, cross it off

v scan to the right until we find a matching b, and cross it off.
v continue scanning to the right until we find a matching c, and cross it off
v Return to the beginning of the tape, and repeat the procedure.

v We’re done when. . .
v We cross of every symbol – then accept ipp p .
v We fail to find a b or c when scanning to the right – reject ipp p .
v We still have some b’s or c’s left over after reading the last a – reject ipp p .

v Note:
v When we return to the beginning of the a’s, we need to be able to

distinguiah having read all of the input from not having enough a’s.
v Solution: we’ll use a different symbol for crossing off a’s.

17 October 2008 – p.8/19



A program for anbncn

while(true) {

if(currentSymbol == �) accept();

if(currentSymbol == a) {

write(A); move(right)

while(currentSymbol ∈ {a, B}) move(right);

if(currentSymbol == b) {

write(B); move(right);

} else reject();

while(currentSymbol ∈ {b, C}) move(right);

if(currentSymbol == c) {

write(C); move(left);

} else reject();

while(currentSymbol != A) move(left);

move(right);

} else if(currentSymbol ∈ {B,C}) move(right);

else reject();

}

17 October 2008 – p.9/19



Compiling to a Turing Machine

q0: while(true) {

q0: if(currentSymbol == �) {

qaccept : accept();

q0: } else if(currentSymbol == a) {

q0: write(A); move(right)

q1: while(currentSymbol ∈ {a, B}) move(right);

q1: if(currentSymbol == b) {

q1: write(B); move(right);

q1: } else

qreject : reject();

q2: while(currentSymbol ∈ {b, C}) move(right);

q2: if(currentSymbol == c) {

q2: write(C); move(left);

q2: } else

qreject : reject();

q3: while(currentSymbol != A) move(left);

q3: move(right);

q0: } else if(currentSymbol ∈ {B,C}) {

q0: move(right);

q0: } else reject();

}
17 October 2008 – p.10/19



A Turing Machine for anbncn

v Input alphabet: Σ = {a,b,c}.

v States: Q = {q0, q1, q2, q3, q4, qaccept , qreject}.

v Tape alphabet: Γ = {a,b,c,A,B,C, �}.

v Transitions:

q0 : (q0,a) → (q1,A, right) (q0, �) → (qaccept , �, right)

(q0, {B,C}) → (q0, •, right) (q0, other) → (qreject , •, right)

q1 : (q1, {a,B}) → (q1, •, right) (q1,b) → (q2,B, right)

(q1, other) → (qreject , •, right)

q2 : (q2, {b,C}) → (q2, •, right) (q2,c) → (q3,C, left)

(q2, other) → (qreject , •, right)

q3 : (q3, Γ − {A} → (q3, •, left) (q3,A) → (q0, •, right)

v Writing a • on the tape means writing the same symbol that was read.

17 October 2008 – p.11/19



A Turing Machine for anbncn

0
a A,R q1

c C,Lb B,R

,RA

,Ra,B

,Ra,B

,Rb,c

,Rb,C

,Ra,Rc,R

q2 3

rejectaccept

q

,LA

q

To avoid clutter, I’ve omitted edges for transitions that can never occur.
These are labeled “other ” in the table on the previous slide.

17 October 2008 – p.11/19



An Accepting Run
step state tape

0 q0 aaabbbccc�∗ The purple symbol

1 q1 Aaabbbccc�∗ indicates the current

2 q1 Aaabbbccc�∗ tape head position.

3 q1 Aaabbbccc�∗

4 q2 AaaBbbccc�∗

5 q2 AaaBbbccc�∗

6 q2 AaaBbbccc�∗

7 q3 AaaBbbCcc�∗

8 q3 AaaBbbCcc�∗

9 q3 AaaBbbCcc�∗

10 q3 AaaBbbCcc�∗

11 q3 AaaBbbCcc�∗

12 q3 AaaBbbCcc�∗

13 q0 AaaBbbCcc�∗

17 October 2008 – p.12/19



An Accepting Run
step state tape

13 q0 AaaBbbCcc�∗

14 q1 AAaBbbCcc�∗

15 q1 AAaBbbCcc�∗

16 q1 AAaBbbCcc�∗

17 q2 AAaBBbCcc�∗

18 q2 AAaBBbCcc�∗

19 q2 AAaBBbCcc�∗

20 q3 AAaBBbCCc�∗

21 q3 AAaBBbCCc�∗

22 q3 AAaBBbCCc�∗

23 q3 AAaBBbCCc�∗

24 q3 AAaBBbCCc�∗

25 q3 AAaBBbCCc�∗

26 q0 AAaBBbCCc�∗

17 October 2008 – p.12/19



An Accepting Run
step state tape

26 q0 AAaBBbCCc�∗

27 q1 AAABBbCCc�∗

28 q1 AAABBbCCc�∗

29 q1 AAABBbCCc�∗

30 q2 AAABBBCCc�∗

31 q2 AAABBBCCc�∗

32 q2 AAABBBCCc�∗

33 q3 AAABBBCCC�∗

34 q3 AAABBBCCC�∗

35 q3 AAABBBCCC�∗

36 q3 AAABBBCCC�∗

37 q3 AAABBBCCC�∗

38 q3 AAABBBCCC�∗

39 q0 AAABBBCCC�∗

17 October 2008 – p.12/19



An Accepting Run
step state tape

39 q0 AAABBBCCC�∗

40 q0 AAABBBCCC�∗

41 q0 AAABBBCCC�∗

42 q0 AAABBBCCC�∗

43 q0 AAABBBCCC�∗

44 q0 AAABBBCCC�∗

45 q0 AAABBBCCC��
∗

47 qaccept AAABBBCCC���
∗

17 October 2008 – p.12/19



Formal Definition of Turing Machines
v A Turing machine is a 7-tuple (Q, Σ, Γ, δ, q0, qaccept , qreject) where

v Q is a finite set, the states.
v Σ is a finite set, the input alphabet.
v Γ ⊃ Σ is a finite set, the tape alphabet.
v δ : (Q × Γ) → (Q × Γ × {L, R}) is the transition function.
v q0 ∈ Q is the initial state.
v qaccept ∈ Q is the accepting state.

v qreject ∈ Q is the rejecting state.

17 October 2008 – p.13/19



Turing Machine Configurations
v Let M = (Q, Σ, Γ, δ, q0, qaccept , qreject) be a Turing machine.

v A configuration consists of
v A state, q, the current state of the Turing Machine.
v A string w, the tape currently holds w�∗.

v A position: where the read/write head is along the tape.

v We write uqv where u ∈ Γ∗ and v ∈ Γ∗ to indicate that a Turing
machine in in a configuration where

v The controller is in state q.
v The tape contents are uv�∗.

v The read/write head is positioned at the first symbol of v.

17 October 2008 – p.14/19



Turing Machine Moves
v Let M = (Q, Σ, Γ, δ, q0, qaccept , qreject) be a Turing machine.

v Let q be a state in Q − {qaccept , qreject}. M can move from
configuration uqcv to configuration u′q′v′ for some u, v, u′, v′ ∈ Γ∗,
q, q′ ∈ Q, and c ∈ Γ, iff

v There is some d such that δ(q, c) = (q′, d, R), and
v v 6= ǫ and u′ = ud, and v′ = v; or
v v = ǫ and u′ = ud, and v′ = �; or

v There is some d such that δ(q, c) = (q′, d, L), and
v u = u′b and v′ = bdv; or
v u = u′ = ǫ and v′ = dv.

v If C1 and C2 are configurations and M can move from C1 to C2,

then we write C1

M
→ C2. If M is obvious from context, we write

C1 → C2.

17 October 2008 – p.15/19



Turing Machine Moves
v Let M = (Q, Σ, Γ, δ, q0, qaccept , qreject) be a Turing machine.

v Let q be a state in Q − {qaccept , qreject}. M can move from
configuration uqcv to configuration u′q′v′ for some u, v, u′, v′ ∈ Γ∗,
q, q′ ∈ Q, and c ∈ Γ, iff . . .

v If C1 and C2 are configurations and M can move from C1 to C2,

then we write C1

M
→ C2. If M is obvious from context, we write

C1 → C2.

v If C = uqv is a configuration with q = qaccept , we say that C is an
accepting configuration.
Likewise if q = qreject , we say that C is a rejecting configuration.

v Accepting and rejecting configuration are halting configurations:
the Turing machine makes no further moves from such a
configuration.

17 October 2008 – p.15/19



Turing Machine Acceptance
v Let M = (Q, Σ, Γ, δ, q0, qaccept , qreject) be a Turing machine.

v M accepts input w iff there is a set of configurations C0, C1, . . . Ci

such that
v C0 = q0w;

v For all j in 0 . . . i − 1, Cj
M
→ Cj−1;

v Ci is an accepting configuration.

v M rejects w iff there is a set of configurations that ends in a
rejecting configuration.

v M loops on input w if M neither accepts nor rejects w. This means
that w executes forever on input w.

17 October 2008 – p.16/19



Languagesrecognizedby TMs
v Let M = (Q, Σ, Γ, δ, q0, qaccept , qreject) be a Turing machine.

v M recognizes language A iff
v M accepts w iff w ∈ A.

v If w 6∈ A, then M may either reject or loop on input w.

v M decides language A iff
v If w ∈ A then M accepts w; and
v if w 6∈ A then M rejects w.

v (In other words, M never loops.)

17 October 2008 – p.17/19



Turing Languages
v A language is Turing recognizable iff there is some Turing machine

that recognizes it (such a Turing machine may loop).

v A language is Turing decidable iff there is some Turing machine
that decides it (i.e. no looping).

v Every Turing decidable language is Turing recognizable, but

v We will show
v there are Turing recognizable languages that are not Turing decidable (next

week)

v there are lanuages that not even Turing recognizable (later).

17 October 2008 – p.18/19



This coming week
v Reading

v October 17 (today): Sipser3.1.
v October 20 (Monday): Sipser3.2.
v October 22 (Wednesday): Sipser3.3.

v October 24 (a week from today): Sipser4.1.

v Homework
v October 17 (today): Homework 4 due; homework 6 goes out.
v October 20 (Monday): Homework 5 due.

v October 24 (a week from today): Homework 6 due; homework 7 goes out.

17 October 2008 – p.19/19


	Background
	Turing Machines
	Turing Machines (diagram)
	All strings that contain three 	ta 's
	All strings that contain three 	ta 's
	An Equivalent Program
	$	ta ^n 	tb ^n 	tc ^n$: Strategy
	A program for $	ta ^n 	tb ^n 	tc ^n$
	Compiling to a Turing Machine
	A Turing Machine for $	ta ^n 	tb ^n 	tc ^n$
	An Accepting Run
	Formal Definition of Turing Machines
	Turing Machine Configurations
	Turing Machine Moves
	Turing Machine Acceptance
	Languages {cmagenta recognized} by TMs
	Turing Languages
	This coming week

