Turing Machines

Mark Greenstreet, CpSc 421, Term 1, 2008/09

@ A simple example

@® Mathematical definition

@® More examples

17 October 2008 — p.1/19

Background

@ A DFA or NFA has a fixed set of states.

@ Thus, a DFA can only remember a bounded amount about its input no matter
how long the input is.

@ We used this to show that there are languages that cannot be recognized by
any DFA.

@ A PDA has a finite controller and an unbounded stack.
@ The stack enables the PDA to store arbitrarily large amounts of data.

@ But, it can only access the top of stack:
@ To reach data that is further down, it must “pop” the intervening data items
off the stack.
@ The finite controller can only remember a bounded amount about the stuff
that has been popped of.
@ This leads to the limitations of PDAs — there are langauges that cannot be
recognized by any PDA.

17 October 2008 — p.2/19

Turing Machines

@ A Turing Machine has a (deterministic) finite state controller, and ...

@ a tape that it can read and write.
@ The tape is unbounded to the right.
@ The tape initially holds the input string.

@ The tape beyond the input string is initially filled with an infinite string of blanks,
L.

@ the finite state controller has two special states:
®p:: If the machine ever reaches this state, it halts and accepts the stringg.
® greject . If the machine ever reaches this state, it halts and rejects the string.
@® If M is a Turing Machine, then the language recognized by M is written L(M)
and is the set of all strings for which the TM reaches the qccept State.
@ at each step:
@ 1/ reads the symbol at its current position on the tape.

@ Based on that symbol and it current state, the machine:
@ Writes a symbol at the current position;
@ Transitions to a new state; and
@ Moves one square to the left or right. 17 October 2008 — p.3/19

Turing Machines (diagram)

My mouse isn’t working right. You can draw it here.

17 October 2008 — p.4/19

All strings that contain three a’s

® Letx = {a,b}.

@®)/ has six states:

having read fewer than 3 a’s.

@® The transitions:

qo 1S the initial state: The machine has read 0 a’s.

q1, g2 and gs3: the machine has read 1, 2 or 3 a’s respectively.
qaccept - the machine reaches the end of the string after reading 3 a’s.

dreject: the machine has read more than 3 a’s or reaches the end of the string

current current next next move
state tape symbol | state tape symbol head
q0 a q1 a right
qo0 b q0 b right
q0 [] Qreject [] right

17 October 2008 — p.5/19

All strings that contain three a’s

@®)/ has six states:

@® The transitions:

current current next next move
state tape symbol state tape symbol head
q0 a q1 a right
q0 b q0 b right
q0 L] Qreject L] right
q1 a q2 a right
q1 b q1 b right
q1 [Qreject L right
q2 a q3 a right
q2 b q2 b right
q2 [Qreject [right
g3 a reject a right
q3 b q3 b right
q3 [Qaccept O right

17 October 2008 — p.5/19

All strings that contain three a’s

You can draw the diagram here.

17 October 2008 — p.6/19

An Equivalent Program

state = qo;
while(true) {
switch(state) {
case qo:
switch(currentSymbol) {
case a:
write(a); state = g1 ; move(right); break;
case b:
write(D); state = go; move(right); break;
case [
write(L]); state = Qreject; Move(right); break;
}
case qi: ...
case q2: ...
Case Qqccept - accept();
Case Qreject: reject();

17 October 2008 — p.7/19

a"b"c". Strategy

® \We can’t count the number of a’s, b’s or ¢’s with our finite control
(you can’t do it with Java int’s long’s either (why?)).

® We can zig-zag back and forth across the tape, matching up a’s,
b’'s and c’s.

® Plan:

@ If the tape starts with an a, cross it off
@ scan to the right until we find a matching b, and cross it off.
@ continue scanning to the right until we find a matching c, and cross it off
@ Return to the beginning of the tape, and repeat the procedure.
@® We're done when...
@ \We cross of every symbol — then accept ().
@® Ve fail to find a b or ¢ when scanning to the right — reject ().
@ e still have some b’s or c’s left over after reading the last a — reject ().
® Note:

@ When we return to the beginning of the a’s, we need to be able to
distinguiah having read all of the input from not having enough a’s.
@ Solution: we'll use a different symbol for crossing off a’s.

17 October 2008 — p.8/19

A program for a"b"c”

while(true) {
if(currentSymbol == []) accept();
if(currentSymbol == a) {
write(A); move(right)
while(currentSymbol € {a, B}) move(right);
if(currentSymbol == b) {
write(B); move(right);
} else reject();
while(currentSymbol € {b, C}) move(right);
if(currentSymbol == C) {
write(C); move(left);
} else reject();
while(currentSymbol != A) move(left);
move(right);
} else if(currentSymbol € {B, C}) move(right);
else reject();

17 October 2008 — p.9/19

Compliling to a Turing Machine

qo0-
qo:
Qaccept -
qo:
qo0-
qi:
qi:
qi:
qi:
Qreject -
qz:
qz:
qz:
qz2:
Qreject -
q3:
q3:
qo:
qo0-
qo:

while(true) {

if(currentSymbol ==) {
accept();

} else if(currentSymbol == a) {
write(A); move(right)

while(currentSymbol € {a, B}) move(right);

if(currentSymbol == b) {
write(B); move(right);
} else
reject();

while(currentSymbol € {b, C}) move(right);

if(currentSymbol == C) {
write(C); move(left);
} else
reject();
while(currentSymbol != A) move(left);
move(right);
} else if(currentSymbol € {B, C}) {
move(right);
} else reject();

17 October 2008 — p.10/19

A Turing Machine for a"b"c”

@ Input alphabet: ¥ = {a,b,c}.

® States: Q = {q0,91, 92,93, 44, Qaccept Qreject }-
@ Tape alphabet: I = {a,b,c,A, B, C,[}.

@® Transitions:

qo = (qo,a) — (qu,A,right) (90, 1)) — (qaccept, [, right)
(90,{B,C}) — (qo, e, right) (qo, other) — (qreject, ®, right)
q1: (q1,{a,B}) — (q1, e,right) (q1,b) — (g2, B, right)
(q1, other) — (qreject , ®, right)
g2 : (g2,{b,C}) — (g2, e,right) (g2,¢) — (g3, C left)
(g2, other) — (qreject , ®, right)
g3 : (g3, ' = {A} — (g3, e, left) (g3, A) — (qo, e, right)

@ \Writing a e on the tape means writing the same symbol that was read.

17 October 2008 — p.11/19

A Turing Machine for a"b"c”

A—O® R
b,C—@® R
b—B,R q2 c—C,L
a—®R

accept reject

To avoid clutter, I've omitted edges for transitions that can never occur.
These are labeled “other” in the table on the previous slide.

17 October 2008 — p.11/19

An Accepting Run

step state tape
01| qo aaabbbcccl]*
1| g1 | Aaabbbcccll*
2| ¢1 Aaabbbccc*
3| g1 | Aaabbbcccl]*
4 | qo | AaaBbbcccll*
5| g2 | AaaBbbcccll*
6 | g2 | AaaBbbcccll*
71 q3 | AaaBbbCcclJ*
8 | g3 | AaaBbbCccll*
9 | g3 | AaaBbbCccll*
10 | g3 | AaaBbbCccl*
11 | g3 | AaaBbbCccl*
12 | g3 | AaaBbbCccll*
13 | go | AaaBbbCccll*

The purple symbol
indicates the current

tape head position.

17 October 2008 — p.12/19

An Accepting Run

step state tape
13 | go | AaaBbbCccl*
14 | ¢1 | AAaBbbCcclI*
15 | ¢q1 | AAaBbbCccl]*
16 | 1 | AAaBbbCcc1*
17 | q2 | AAaBBbCccI*
18 | ¢2 | AAaBBbCcc[I*
19 | ¢» | AAaBBbCcc[I*
20 | g3 | AAaBBbCCc[I*
21 | g3 | AAaBBbCCc[I*
22 | g3 | AAaBBbCCc*
23 | g3 | AAaBBbCCc[*
24 | g3 | AAaBBbCCc[I*
25 | g3 | AAaBBbCCc[*
26 | qo | AAaBBbCCc[J*

17 October 2008 — p.12/19

An Accepting Run

step State tape
26 | qo | AAaBBbCCc[*
27 | @1 | AAABBbCCc*
28 | ¢1 | AAABBbCCc
29 | ¢ | AAABBbCCc[*
30 | q» | AAABBBCCc[J*
31 | ¢qo | AAABBBCCc[J*
32 | ¢2 | AAABBBCCc I
33 | g3 | AAABBBCCCL*
34 | ¢q3 | AAABBBCCCL*
35 | ¢q3 | AAABBBCCCL*
36 | ¢q3 | AAABBBCCCL*
37 | g3 | AAABBBCCCL*
38 | ¢3 | AAABBBCCCL*
39 | qo | AAABBBCCCLI*

17 October 2008 — p.12/19

An Accepting Run

step State tape

39| qo | AAABBBCCCLI*

40| qo | AAABBBCCCLI*

41| qo | AAABBBCCCLI*

42 | qo | AAABBBCCCL*

43| qo | AAABBBCCCL*

44 | qo | AAABBBCCCLI*

45 | qo | AAABBBCCC
A7 | Qaceeps | AAABBBCCCL CIJ*

17 October 2008 — p.12/19

Formal Definition of Turing Machines

® A Turing machine is a 7-tuple (Q, 3, T, 6, qo, Qaccept, Qreject) Where

Q is a finite set, the states.

> is a finite set, the input alphabet.

I' D X is afinite set, the tape alphabet.

0:(QxT)— (QxT x{L,R}) is the transition function.
qo € @ is the initial state.

Jaccept € Q 1S the accepting state.

dreject € @ IS the rejecting state.

17 October 2008 — p.13/19

Turing Machine Configurations

® Let M = (Q,%, 1,6, qo, Qaccept, ¢reject) D€ @ Turing machine.

® A configuration consists of

@ A state, g, the current state of the Turing Machine.

@ A string w, the tape currently holds wJ*.
@ A position: where the read/write head is along the tape.

® We write uqu where v € I'* and v € I'* to indicate that a Turing
machine in in a configuration where

@ The controller is in state g.

@ The tape contents are wvl[J*,

@ The read/write head is positioned at the first symbol of v.

17 October 2008 — p.14/19

Turing Machine Moves

® Let M = (Q,%, 1,6, qo, Qaccept, ¢reject) D€ @ Turing machine.

® Let g be astate in QQ — {Gaccept; Greject }- M can move from
configuration ugcv to configuration u’¢’v’ for some u, v, v, v’ € T'*,
q,¢ € Q,and c e T, iff

@ There is some d such that §(q,¢) = (¢’, d, R), and
@® vA£ecandu =ud, and v’ = v;or
® v=candv =ud, and v’ =[J; or

@ There is some d such that §(¢,c) = (¢’, d, L), and
® u—u'band v’ = bdv; or
® «w—u =candv = dv.

® If ¢, and (5 are configurations and M can move from C'; to Cs,
then we write C; M (5. If M is obvious from context, we write
Cl — CQ.

17 October 2008 — p.15/19

Turing Machine Moves

® Let M = (Q,%, 1,6, qo, Qaccept, ¢reject) D€ @ Turing machine.

® Let g be astate in QQ — {Gaccept; Greject }- M can move from
configuration ugcv to configuration u’¢’v’ for some u, v, v, v’ € T'*,
q,¢ € Q,andcel,iff ...

® If C; and (5 are configurations and M can move from C to Cs,
then we write C; M C5. If M is obvious from context, we write
Cl — CQ.

® If C' = uqv is a configuration with ¢ = ggccept, We say that C' is an
accepting configuration.
Likewise if ¢ = greject, We say that C' is a rejecting configuration.

® Accepting and rejecting configuration are halting configurations:
the Turing machine makes no further moves from such a
configuration.

17 October 2008 — p.15/19

Turing Machine Acceptance

® Let M = (Q,%, 1,6, qo, Qaccept, ¢reject) D€ @ Turing machine.

® MM accepts input w iff there is a set of configurations Cy, C4, ... C;
such that
® ¢ = qow;

® Foralljin0...i—1,C; 5 Cj_1;
@ (,; is an accepting configuration.

®)/ rejects w iff there is a set of configurations that ends in a
rejecting configuration.

® M loops on input w if M neither accepts nor rejects w. This means
that w executes forever on input w.

17 October 2008 — p.16/19

Languagesrecognizedby TMs

® Let M = (Q,%, 1,6, qo, Qaccept, ¢reject) D€ @ Turing machine.
® M recognizes language A iff

@®) accepts wiff w € A.

® Ifw ¢ A, then M may either reject or loop on input w.
® M decides language A iff

® If w € Athen M accepts w; and
® ifw ¢ Athen M rejects w.

@ (In other words, M never loops.)

17 October 2008 — p.17/19

Turing Languages
® A language is Turing recognizable iff there is some Turing machine

that recognizes it (such a Turing machine may loop).

® A language is Turing decidable iff there is some Turing machine
that decides it (i.e. no looping).

® Every Turing decidable language is Turing recognizable, but

® We will show

@ there are Turing recognizable languages that are not Turing decidable (next
week)

@ there are lanuages that not even Turing recognizable (later).

17 October 2008 — p.18/19

This coming week

® Reading
@ October 17 (today): Sipser3.1.
@ October 20 (Monday): Sipser3.2.
@ October 22 (Wednesday): Sipser3.3.

@ October 24 (a week from today): Sipser4.1.

® Homework
@ October 17 (today): Homework 4 due; homework 6 goes out.
@ October 20 (Monday): Homework 5 due.

@ October 24 (a week from today): Homework 6 due; homework 7 goes out.

17 October 2008 — p.19/19

	Background
	Turing Machines
	Turing Machines (diagram)
	All strings that contain three 	ta 's
	All strings that contain three 	ta 's
	An Equivalent Program
	$	ta ^n 	tb ^n 	tc ^n$: Strategy
	A program for $	ta ^n 	tb ^n 	tc ^n$
	Compiling to a Turing Machine
	A Turing Machine for $	ta ^n 	tb ^n 	tc ^n$
	An Accepting Run
	Formal Definition of Turing Machines
	Turing Machine Configurations
	Turing Machine Moves
	Turing Machine Acceptance
	Languages {cmagenta recognized} by TMs
	Turing Languages
	This coming week

