I. Languages
A. Alphabets and strings
B. Definition of languages: a subset of the set of all strings.
C. Operations on languages:

1. complement, union and intersection
2. concatenation
3. Kleene star
D. Related concepts
4. proving two languages are the same
5. inductive definitions
II. Computation Models for Regular Languages
A. The models:
6. DFAs
7. NFAs
8. Regular expressions
B. Key concepts
9. Acceptance conditions
10. Be able to design a DFA, NFA or regular expression to recognize (or generate) a simple regular language from an English description of the language.
11. Non-determinism
12. Special constructions
a. Product machines
b. Power set
III. Closure properties
A. Boolean operations: complement, union, intersection
B. Concatenation
C. Intersection
D. Reversal
IV. Non-regular languages
A. The pumping lemma
13. What it states
14. How to use it to prove that a language is not regular
B. Some "typical" example of non-regular languages:
15. $a^{n} b^{n}$
16. Balanced parentheses
17. Length is a prime, perfect square, integer power of two.
C. Using closure properties to prove that a language is not context free.
