The Pumping Lemma for CFLs

Mark Greenstreet, CpSc 421, Term 1, 2008/09

• A language that is not context free: $a^n b^n c^n$.

A pumping lemma for context free languages

Examples

$\mathbf{a}^n \mathbf{b}^n \mathbf{c}^n$ is not context free

Proof strategy:

- Let $A = \{ w \mid \exists n \in \mathbb{Z}^{\geq 0} . w = a^n b^n c^n \}.$
- A is not context free.
- Use proof by contradiction.
 - Assume G = (V, Σ, R, S₀) be a CNF CFG that supposedly generates A (note: Σ = {a, b, c}).
- Pick a really big n (how big depends on G) and consider the parse tree, \mathcal{T} for a derivation for $w = a^n b^n c^n$.
- We'll take a closer look at this parse tree and derivation on the next slide.

Deriving w

- CNF parse-trees are binary-trees, with nodes of degree-1 at the level just above the leaves.
- Thus, for $k \ge 2$, a CNF parse-tree of height k has at most 2^{k-2} leaves.

If we choose n large enough, we can find a vertex, v of of T (the parse tree for $w = a^n b^n c^n$) where:

• the height of v is |G| + 1, and

- each leaf of the subtree rooted at v is either an a or a b.
- Because v is at height |G| + 1, we can find a path from v to a leaf that has two nodes, u and u' that are labeled with the same variable from V.
- We can replace the subtree rooted at u' with the subtree rooted at u to produce a new parse tree, \mathcal{T}' .
 - Note that parse tree \mathcal{T}' has more leaves for a's and/or b's than tree \mathcal{T} ;
 - however, both parse-trees have the same number of leaves for c's.
 - Therefore, the strings produced by \mathcal{T} and \mathcal{T}' cannot both be in A.
 - $\therefore A$ is not regular.

The Pumping Lemma for CFLs

Let *A* be a CFL. There is a constant *p* (that depends on the choice of *A*) such that for any string $s \in A$ with $|s| \ge p$, there are strings *u*, *w*, *x*, *y* and *z* such that:

- s = uwxyz;
- $|wxy| \le p;$
- $|wy| \ge 1;$
- For all $i \in \mathbb{Z}^{\geq 0}$, $uw^i xy^i z \in A$.

As with the pumping lemma for regular languages, we will typically use the contrapositive form to show that a language is not context free.

- If we can show that for any choice of p, there is some string $s \in A$ with $|s| \ge p$ such that at least one of the four conditions listed above is violated,
 - Then A is not context free.

Proof strategy

- We'll assume a CNF grammar for A.
 Thus, it's parse-trees are binary trees.
- If we make p big enough, then parse tree must be fairly high (roughly $\log_2(p)$ to generate a string of length p).
- Consider a path from S₀ to a leaf that is longer than |G|.
 This path must encounter two nodes that correspond to the same variable, u ∈ V.
- These two subtrees that are derivations from u are "interchangable".

This gives us what we need for pumping.

Height of a derivation

- Let $G = (V, \Sigma, R, S_0)$ be a CNF CFG.
- Let $\Psi = V \cup \Sigma$ be the union of the variables and terminals.
- Let $\alpha \in \Psi^+$ and $s \in \Sigma^*$ such that $\alpha \stackrel{*}{\Rightarrow} s$.
- We define height(v, s) as shown below:

$$\begin{aligned} height(\mathbf{v},\mathbf{c}) &= 1, & (v \Rightarrow \mathbf{c}) \in R \\ height(v,s) &= 1 + \max_{v_1, v_2, s_1, s_2, i} height(v_i, s_i), & \wedge (s = s_1, s_2) \wedge (i \in \{1, 2\} \\ \wedge (v_1 \stackrel{*}{\Rightarrow} s_1) \wedge (v_2 \stackrel{*}{\Rightarrow} s_2) \end{aligned}$$

- If there is more than one way for α to derive s, our definition defines the height to be the "tallest" one. This doesn't really matter for the way we'll use height when proving the pumping lemma.
- Because G is CNF, $S_0 \stackrel{|s|+1}{\Rightarrow} s$ for any string of length two or longer. In particular, there are no unbounded derivations. Thus, the *height* is bounded and well-defined.

Properties of *height* (1 of 2)

Choose any $v \in V$ and $s \in \Sigma^*$ such that $v \stackrel{*}{\Rightarrow} s$ and height(v, s) = h.

Property 1: $|s| \le 2^{h-1}$. Equivalently, $h \ge \lceil \log_2 |s| \rceil + 1$.

Proof: By induction on h.

It's a consequence of the fact that parse-trees for CNF grammars are binary trees (with degree one nodes for the unit rules that produce the terminals at the end).

Properties of height (2 of 2)

As before, choose any $v \in V$ and $s \in \Sigma^*$ such that $v \stackrel{*}{\Rightarrow} s$ and height(v, s) = h.

- **Property 2 (Paths):** There are strings $\alpha_1 \dots \alpha_h$ and $\beta_1 \dots \beta_h$ in Ψ^* , and variables $v_1 \ldots v_h \in V$ such that
 - $\alpha_1 = \beta_1 = \epsilon$ and $v_1 = v$.

For each $i \in 2 \dots h$ there is a rule $v_{i-1} \Rightarrow u_1 u_2$ in R such that either

$$lace{}$$
 $v_i=u_1$, $lpha_i=lpha_{i-1}$ and $eta_i=u_2eta i-1$; or

$$v_i = u_2, \, \alpha_i = \alpha_{i-1}u_1 \text{ and } \beta_i = \beta i - 1.$$

For $1 \le i < j \le h$, there are strings $x, y \in \Psi +$ such that

$$\alpha_i v_i \beta_i \stackrel{j-i}{\Rightarrow} \alpha_j v_j \beta_j$$

with $\alpha_i = \alpha_i x$ and $\beta_i = y \beta_i$.

 $a_h v_h \beta_h \stackrel{*}{\Rightarrow} s.$

Proof: by induction on h, but you could say that "By the definition of height, there is a path of length h in the parse tree from the root, v, to a leaf." and get full-credit.

3 October 2008 - p.8/??

Proof strategy (refined)

- Let $p = 2^{|V|}$. Let s be any string in A with $|s| \ge p$.
- From the Property 1 of *height*, $height(S_0.s) \ge |V| + 1$.
- From the Property 2 of height, there must be a path from S_0 to a terminal in s that passes through at least |V| + 1 variables.
- By the pigeon-hole principle, two of these parse-tree nodes must be labeled with the same variables.
- The two subtrees rooted at these nodes are interchangeable.
 We're ready to pump. :

Proof of the pumping lemma

Let $p = 2^{|V|}$. Let s be any string in A with $|s| \ge p$.

- From the Property 1 of height, $height(S_0.s) \ge |V| + 1$. Let h = |V| + 1.
- Need to show strings u, w, x, y and z such that: $s = uwxyz; |wxy| \le p; |wy| \ge 1;$ and $\forall i \in \mathbb{Z}^{\ge 0}. uw^i xy^i z \in A.$
- Let $\alpha_1 \dots \alpha_h$ and $\beta_1 \dots \beta_h$ be strings in Ψ^* , and $v_1 \dots v_h$ be variables in V according to Property 2 of *height*.

By the pigeon hole principle, we can find $i, j \in 1 \dots h$ with $i \neq j$ and $v_i = v_j$.

We now have

$$\begin{array}{cccc} S_0 & \stackrel{i-1}{\Rightarrow} & \alpha_i v_i \beta_i \\ & \stackrel{j-i}{\Rightarrow} & \alpha_i w v_j y \beta_j \\ & \stackrel{*}{\Rightarrow} & s \end{array}$$

- Let u, x and z be strings such that $\alpha_i \stackrel{*}{\Rightarrow} u, v_j \stackrel{*}{\Rightarrow} x, \beta_i \stackrel{*}{\Rightarrow} z$, and s = xyz.
- We'll show on the next slide that for all u, w, x, y and z as defined above satisfy the conditions of the pumping lemma.

3 October 2008 - p.10/??

Example: ww is not a CFL

Game with an adversary

Example: $a^n b^{n^2}$ is not a CFL

Closing remarks