Context Free Languages

Mark Greenstreet, CpSc 421, Term 1, 2008/09

Lecture Outline

Context Free Languages

- $a^{n} b^{n}$ - One More Time
- Formal Definition
- More Examples

$a^{n} b^{n}$ - one more time

- Let $A=\mathrm{a}^{n} \mathrm{~b}^{n}$. A is not regular.
- Here's an inductive definition of the language. A string, w, is in A iff
- $w=\epsilon$, or
- There is a string, $x \in A$ such that $w=a x b$.
- Can we formalize this approach?

Why formalize?
We formalize the definition of languages so we can reason about properties that every language in some class has. That way, we don't have to prove properties individually.
Why not inductive definitions with English?
Because it's not possible/practical to determine what can and cannot be said in English. How would you write an English sentence to state something that can't be said in English?

A Notation for Describing $\mathrm{a}^{n} \mathrm{~b}^{n}$

- $S \rightarrow \epsilon \mid$ a S b
- A string is in the language if we can derive it from S using these two rules.
- Example: aaabbbb

$$
\begin{aligned}
S & \rightarrow \text { a } S \mathrm{~b} \\
& \rightarrow \text { aa } S \mathrm{bb} \\
& \rightarrow \text { aaa } S \mathrm{bbb} \\
& \rightarrow \text { aaa } \epsilon \mathrm{bbb}=\text { aaab.b. }
\end{aligned}
$$

$\# 0$'s $=\# 1$'s

- Let B be the language of strings that have an equal number of 0 's and 1 's.
- From the Sept. 5 notes,
$w=\epsilon$; or
- There is a string x in B such that $w=0 x 1$ or $w=1 x 0$; or

There are strings x and y in B such that $w=x y$.

- Can we write this in our new notation?

$\# 0$'s $=\# 1$'s

- Let B be the language of strings that have an equal number of 0 's and I's.
- From the Sept. 5 notes,
$w=\epsilon$; or
There is a string x in B such that $w=0 x 1$ or $w=1 x 0$; or
- There are strings x and y in B such that $w=x y$.
- Can we write this in our new notation?
$\left.\begin{array}{lll}B & \rightarrow & \epsilon \\ \mid & 0 & B \\ 1 & 1 \\ \mid & 1 & B\end{array}\right)$

$\# 0$'s $<\#$ 1's

- Let C be the language of strings that have an fewer 0's than I's.
- String w is in C iff

There are strings x and y in B such that $w=x 1 y$, where B is the set of all strings with an equal number of ones and zeros as defined in the problem statement.

There are strings x and y in C such that $w=x y$.

- In our new notation, this is:

$\# 0$'s $<\#$ 1's

- Let C be the language of strings that have an fewer 0's than I's.
- String w is in C iff

There are strings x and y in B such that $w=x 1 y$, where B is the set of all strings with an equal number of ones and zeros as defined in the problem statement.

- There are strings x and y in C such that $w=x y$.
- In our new notation, this is:

$C \rightarrow B \perp B$	$C C$	
$B \rightarrow \epsilon$	$B B$	
	$0 B 1$	$1 B 0$

Formalizing Our Notation

- A context-free grammar (CFG) is a 4-tuple, (V, Σ, R, S) where
- V is a finite set of variables.
- Σ is a finite set of terminals. $\Sigma \cap V=\emptyset$.
- R is a finite set of rules.
- Each rule is a tuple of the form (v, s) where $v \in V$ is a variable and $s \in(V \cup \Sigma)^{*}$ is as string of variables and/or terminals (possilby empty).
- The interpretation is that any occurrence of v can be replaced with s.
- We will write $v \rightarrow s$ to indicate the tuple (v, s).
$S \in V$ is the start variable.

Derivations

CFGs give a set of rules for deriving strings of symbols and terminals.

- A single step derivation:

If $w=u A v$ with $w, u, v \in(V \cup \Sigma)^{*}$ and $A \in V$,
and $A \rightarrow x \in R$,

- Then $w \Rightarrow u x v$,
- and we say that w yields $u x v$.
- A multi-step derivation
- We say that w derives x iff

We can find strings $v_{0}, v_{1}, \ldots, v_{m}$ such that
$v_{0}=w$; and $v_{m}=x$; and

- $v_{i-1} \Rightarrow v_{i}$ for all $i \in 1 \ldots m$.

We write $w \stackrel{*}{\Rightarrow} x$ if w derives x.

The Language Generated by a CFG

- Let $G=(V, \Sigma, R, S)$ be a CFG.
- The language generated by G is $L(G)$ where

$$
L(G)=\left\{s \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} s\right\}
$$

- Note that if $S \stackrel{*}{\Rightarrow} w, w$ is a string in $(V \cup \Sigma)^{*}$. In other words, a derivation can, in general, produce a mixture of variables and terminals.
- However, $L(G)$ only includes strings with no variables all variables must have been expanded into strings of terminals.

Regular Languages are Context Free

Proof: by induction on the definition of regular expressions.

- Let α be a regular expression with alphabet Σ.
- Case $\alpha=\emptyset$: Let $G=(\{S\}, \Sigma, \emptyset, S)$.

With no productions, S cannot generate any string of terminals. Thus, $L(G)=\emptyset$.

- Case $\alpha=\epsilon$: Let $G=(\{S\}, \Sigma,\{S \rightarrow \epsilon\}, S)$.

Only one derivation is possible: the single step derivation that yields ϵ. Thus, $L(G)=\{\epsilon\}$.

- Case $\alpha=\mathrm{c}$, for some $\mathrm{c} \in \Sigma$: Let $G=(\{S\}, \Sigma,\{S \rightarrow \mathrm{c}\}, S)$. $L(G)=\{c\}$ by an argument like that for the previous case.
- Case $\alpha=\beta \cup \gamma$:

Let $G_{\beta}=\left(V_{\beta}, \Sigma, R_{\beta}, S_{\beta}\right)$ and $G_{\gamma}=\left(V_{\gamma}, \Sigma, R_{\gamma}, S_{\gamma}\right)$ be CFGs that generate $L(\beta)$ and $L(\gamma)$ respectively. We assume that V_{β} and V_{γ} are dijoint.
Let $G=\left(\{S\} \cup V_{\beta} \cup V_{\gamma}, \Sigma,\left\{S \rightarrow S_{\beta}, S \rightarrow S_{\gamma}\right\} \cup R_{\beta} \cup R_{\gamma}, S\right)$
where $S \notin V_{\beta} \cup V_{\gamma}$.
$L(G)=L\left(G_{\beta}\right) \cup L\left(G_{\gamma}\right)=L(\beta) \cup L(\gamma)=L(\beta \cup \gamma)$
Proof details are on slide 18.

Regular Languages. . . (cont)

- Case $\alpha=\beta \cdot \gamma$:

Let G_{β} and G_{γ} be CFGs that generate $L(\beta)$ and $L(\gamma)$ as above.
Let $G=\left(\{S\} \cup V_{\beta} \cup V_{\gamma}, \Sigma,\left\{S \rightarrow S_{\beta} S_{\gamma}\right\} \cup R_{\beta} \cup R_{\gamma}, S\right)$
where $S \notin V_{\beta} \cup V_{\gamma}$.
$L(G)=L\left(G_{\beta}\right) \cdot L\left(G_{\gamma}\right)=L(\beta) \cdot L(\gamma)=L(\beta \cdot \gamma)$
Proof details are on slide 22.

- Case $\alpha=\beta^{*}$: Let G_{β} generate $L(\beta)$ as above.

Let $G=\left(\{S\} \cup V_{\beta}, \Sigma,\left\{S \rightarrow S S_{\beta}, S \rightarrow \epsilon\right\} \cup R_{\beta}, S\right)$
$L(G)=L\left(G_{\beta}\right)^{*}=L\left(\beta^{*}\right)$. Proof details are on slide 24.

Regular Languages are Context Free

Proof by building a CFG that simulates a DFA.

- Let A be a regular language.
- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA that recognizes A.

Assume that Q and Σ are disjoint.

- Define R as shown below:

$$
\begin{aligned}
R=\quad & \{(q \rightarrow c p) \mid c \in \Sigma \text { and } \delta(q, c)=p\} \\
\cup & \{(q \rightarrow \epsilon) \mid q \in F\}
\end{aligned}
$$

- Let $G=\left(Q, \Sigma, R, q_{0}\right)$ be a CFG. $L(G)=A$.
- Proof:

We can prove by induction that $\delta\left(q_{0}, w\right)=q$ iff G generates $w q$ (see slide 26).

- If G generates $w q$ and $q \in F$, then G generates w. Thus, $L(G) \supseteq A$.
- For the other direction, we prove by induction on the derivation that if $q_{0} \stackrel{*}{\Rightarrow} w$, then either $w=w q$ where $\delta\left(q_{0}, w\right)=q$, or $w \in A$. Thus, $L(G) \subseteq A$.

Arithmetic Expressions

$G=(V, \Sigma, R$, Expr $)$, where

$V=\{$ Expr, ExprList, NonEmptyExprList $\}$	
$\Sigma=$	\{INTEGER, IDENTIFIER, PLUS, MINUS,
	TIMES, DIVIDE, EXP,
	LPAREN, RPAREN, COMMA $\}$
Expr	Integer \| IDENtifier
	Expr PLUS Expr \| Expr MINUS Expr
	Expr Times Expr \| Expr DIVIde Expr
	Expr EXP Expr \| LPAREN Expr RPAREN
	IDENTIFIER LPAREN ExprList RPAREN
ExprList $\rightarrow \epsilon \mid$ NonEmptyExprList	
NonEmptyExprList \rightarrow Expr	
	mptyExprList COMMA Expr

Arithmetic Terminals

Regular Expressions:

Arithmetic Example

$2+3 * 4$
Expr \Rightarrow Expr PLUS Expr
\Rightarrow INTEGER PLUS Expr
\Rightarrow INTEGER PLUS Expr TIMES Expr
\Rightarrow INTEGER PLUS INTEGER TIMES Expr
\Rightarrow INTEGER PLUS INTEGER TIMES INTEGER

The Grammar of Java

See

- http://www.daimi.au.dk/dRegAut/JavaBNF.html, or
- http://www.cui.unige.ch/db-
research/Enseignement/analyseinfo/JAVA/BNFindex.html

The coming week

Reading:
September 24 (Today): Introduction to Context Free Languages - Sipser 2.1. Lecture will cover through "Designing Context-Free Grammars" (i.e. pages 99-105).

September 26 (Friday): Chomsky Normal Form
The rest of Sipser 2.1 (i.e. pages 105-109).
September 29 (Monday): Push-Down Automata - Sipser 2.2. Lectue will cover through page 114: "Examples of Push-Down Automata."
October 1 (A week from today): Equivalence of CFGs and PDAs
The rest of Sipser 2.2.
Homework:
September 26 (Friday): Homework 2 due. Homework 3 goes out (due Oct. 3).
The due date for homework 3 will be strict - no late assignments will be accepted.

Midterm: Oct. 8

Proof for $\alpha=\beta \cup \gamma$

$L(G) \subseteq L(\beta \cup \gamma)$

- Let $s \in L(G)$. Thus, $S \stackrel{*}{\Rightarrow} w$.
- Because $S \neq w$, the derivation must have at least one step, in our notation $S \Rightarrow u \stackrel{*}{\Rightarrow} w$.
- u must be either S_{β} or S_{γ} from the definition of R (there are no other rules for S).
- If $u=S_{\beta}$, then $w \in L\left(G_{\beta}\right)$ by the construction of G. The induction hypothesis yields $L\left(G_{\beta}\right)=L(\beta)$, and thus $u \in L(\beta \cup \gamma)$ by the definition of the languages generated by regular expressions.
- If $u=S_{\gamma}$, the argument is similar.
$L(G) \supseteq L(\beta \cup \gamma)$ (see next slide).

Proof for $\alpha=\beta \cup \gamma$ (cont.)

$L(G) \supseteq L(\beta \cup \gamma)$

- If $w \in L(\beta \cup \gamma)$, then either $w \in L(\beta)$ or $w \in L(\gamma)$. We'll assume $w \in L(\beta)$; the other case is equivalent.
- $w \in L\left(G_{\beta}\right)$ by the induction hypothesis.
- $S_{\beta} \stackrel{*}{\Rightarrow} w$ by the definition of $L\left(G_{\beta}\right)$
$S \Rightarrow S_{\beta} \stackrel{*}{\Rightarrow} w$ by the definition R.
- $w \in L(G)$ by the definition of $L(G)$.

Thus, $L(G)=L(\beta \cup \gamma)$ as claimed.

A lemma for concatenation

Let $G=(V, \Sigma, R, S)$ be a CFG and let $x_{1}, x_{2} \in(V \cup \Sigma)^{*}$ be strings of varibles and/or terminals.

- $x_{1} x_{2} \stackrel{*}{\Rightarrow} w$ iff there are strings $w_{1}, w_{2} \in(V \cup \Sigma)^{*}$ such that $x_{1} \stackrel{*}{\Rightarrow} w_{1}$ and $x_{2} \stackrel{*}{\Rightarrow} w_{2}$.
- Proof: If you think this is obvious, feel free to skip to slide 22.
- If $x_{1} x_{2} \stackrel{*}{\Rightarrow} w$, then $\exists w_{1}, w_{2}$ s.t. $x_{1} \stackrel{*}{\Rightarrow} w_{1}, x_{2} \stackrel{*}{\Rightarrow} w_{2}$, and $w=w_{1} w_{2}$.

By induction on the length of the derivation.

- If the derivation has zero steps, then $w=x_{1} x_{2}$, and the result holds trivially (i.e. $x \stackrel{*}{\Rightarrow} x$ for any string $\left.x \in(V \cup \Sigma)^{*}\right)$.
- If the derivation has $k+1$ steps, then $x_{1} x_{2} \stackrel{k}{\Rightarrow} u \Rightarrow w$.
- By the induction hypothesis, we can write $u=u_{1} u_{2}$ where $x_{1} \stackrel{*}{\Rightarrow} u_{1}$ and $x_{2} \stackrel{*}{\Rightarrow} u_{2}$.
- Furthermore, we can write $u=y V z$ where $V \rightarrow t$ and $w=y t z$.
- If $|y V| \leq\left|u_{1}\right|$, then we write $u_{1}=y V z_{1}$ and note that $z=z_{1} u_{2}$. Then $u_{1} \Rightarrow y t z_{1}$, and $u_{2} \stackrel{0}{\Rightarrow} u_{2}$, and $w=\left(y t z_{1}\right) \cdot u_{2}$; showing the claim. If $|y V|>\left|u_{1}\right|$, then a similar argument applies where the last step is applied to u_{2}.
- If $x_{1} \stackrel{*}{\Rightarrow} w_{1}$ and $x_{2} \stackrel{*}{\Rightarrow} w_{2}$, then $x_{1} x_{2} \stackrel{*}{\Rightarrow} w_{1} w_{2}$. See next slide.

A lemma for concatenation (cont.)

- Proof (cont.)

If $x_{1} \stackrel{*}{\Rightarrow} w_{1}$ and $x_{2} \stackrel{*}{\Rightarrow} w_{2}$, then $x_{1} x_{2} \stackrel{*}{\Rightarrow} w_{1} w_{2}$.
We show that $x_{1} x_{2} \stackrel{*}{\Rightarrow} w_{1} x_{2} \stackrel{*}{\Rightarrow} w_{1} w_{2}$.
We show that $x_{1} x_{2} \stackrel{*}{\Rightarrow} w_{1} x_{2}$ by induction on the length of the derivation for $x_{1} \stackrel{*}{\Rightarrow} w_{1}$.

- If $x_{1} \stackrel{0}{\Rightarrow} w_{1}$, then $w_{1}=x_{1}$ and the result holds trivially.
- If $x_{1} \stackrel{k \pm 1}{\Rightarrow} w_{1}$, then $x_{1} \stackrel{k}{\Rightarrow} u \Rightarrow w_{1}$.
- By the induction hypothesis, $x_{1} x_{2} \stackrel{*}{\Rightarrow} u x_{2}$.
- Because $u \Rightarrow w_{1}$, we have $x_{1} x_{2} \stackrel{*}{\Rightarrow} w_{1} x_{2}$ as claimed.

The proof that $w_{1} x_{2} \stackrel{*}{\Rightarrow} w_{1} w_{2}$ is similar.

Proof for $\alpha=\beta \cdot \gamma$

$L(G) \subseteq L(\beta \cdot \gamma)$

- Let $w \in L(G)$. Thus, $S \stackrel{*}{\Rightarrow} w$.
- Because $S \neq w$, the derivation must have at least one step, in our notation $S \Rightarrow u \stackrel{*}{\Rightarrow} w$.
- u must be $S_{\beta} S_{\gamma}$ from the definition of R (there are no other rules for S).
- By the lemma from slide 20 , there are strings w_{β} and w_{γ} such that $S_{\beta} \stackrel{*}{\Rightarrow} w_{\beta}$, $S_{\gamma} \stackrel{*}{\Rightarrow} w_{\gamma}$, and $w=w_{\beta} \cdot w_{\gamma}$.
- By the construction of $G, w_{\beta} \in L\left(G_{\beta}\right)$ and the induction hypothesis yields $w_{\beta} \in L(\beta)$. Likewise, $w_{\gamma} \in L(\gamma)$.
- Thus, $w=w_{\beta} \cdot w_{\gamma} \in L(\beta) \cdot L(\gamma) \in L(\beta \cdot \gamma)$ as required.
$L(G) \supseteq L(\beta \cdot \gamma)$ (see next slide).

Proof for $\alpha=\beta \cdot \gamma$ (cont.)

$L(G) \supseteq L(\beta \cdot \gamma)$

- If $w \in L(\beta \cdot \gamma)$, then there are strings w_{β} and w_{γ} such that $w_{\beta} \in L(\beta)$, $w_{\gamma} \in L(\gamma)$, and $w=w_{\beta} \cdot w_{\gamma}$.
- By the induction hypothesis, $S_{\beta} \stackrel{*}{\Rightarrow} w_{\beta}$ and S_{γ} derives w_{γ}.
- By the lemma from slide 20, $S_{\beta} S_{\gamma} \stackrel{*}{\Rightarrow} w_{\beta} w_{\gamma}$.
- From the construction of $G, S \rightarrow S_{\beta} S_{\gamma}$.

Thus, $S \Rightarrow S_{\beta}, S_{\gamma} \stackrel{*}{\Rightarrow} w_{1} w_{2}=w$.
$\therefore w \in L(G)$ as required.
Thus, $L(G)=L(\beta \cdot \gamma)$ as claimed.

Proof for $\alpha=\beta^{*}$

$L(G) \subseteq L\left(\beta^{*}\right)$

- Let $w \in L(G)$. Thus, $S \stackrel{*}{\Rightarrow} w$.
- Because $S \neq w$, the derivation must have at least one step, in our notation $S \Rightarrow u \stackrel{*}{\Rightarrow} w$.
- u must be either ϵ or $S S_{\beta}$ from the definition of R (there are no other rules for S).
- If $u=\epsilon$, then $w=\epsilon \in L\left(\beta^{*}\right)$
- Otherwise, $u=S S_{\beta}$, and by the lemma from slide 20 , we can find w_{1} and w_{2} such that $S \stackrel{*}{\Rightarrow} w_{1}, S_{\beta} \stackrel{*}{\Rightarrow} w_{2}$ and $w=w_{1} w_{2}$.
- $w_{1} \in L\left(\beta^{*}\right)$ by induction on the derivation.
- $w_{2} \in L(\beta)$ by the induction hypothesis for our induction on the definition of regular expressions.
- Thus, $w_{1} w_{2} \in L(\beta)$ by the definition of $L(\beta)$ as required.
$L(G) \supseteq L\left(\beta^{*}\right)$ (see next slide).

Proof for $\alpha=\beta \cdot \gamma$ (cont.)

$L(G) \supseteq L\left(\beta^{*}\right)$

- If $w \in L\left(\beta^{*}\right)$, then there is some $k \geq 0$ and strings $x_{1}, \ldots x_{k}$ such that $w=\prod_{i=1}^{k} x_{i}$ (with \prod denoting concatenation). Our proof is by induction on k, and our induction hypothesis is $S \stackrel{*}{\Rightarrow} \prod_{i=1}^{k} x_{i}$.
If $k=0$, then $w=\epsilon \in L(G)$ because $S \rightarrow \epsilon$.
- If $k>0$, then we note that $\prod_{i=0}^{k} x_{i}=\left(\prod_{i=0}^{k-1} x_{i}\right) x_{k}$.
- $S \stackrel{*}{\Rightarrow} \prod_{i=0}^{k-1} x_{i}$ by the induction hypothesis.
- $S_{\beta} \stackrel{*}{\Rightarrow} x_{k}$ by the induction hypothesis for our induction on the definition of regular expressions.
- Thus, $S \Rightarrow S S_{\beta} \stackrel{*}{\Rightarrow} \prod_{i=0}^{k} x_{i}=\left(\prod_{i=0}^{k-1} x_{i}\right) x_{k}$ by the definition of G and the lemma from slide 20.

Thus, $L(G)=L\left(\beta^{*}\right)$ as claimed.

DFA proof

Let M and G be a DFA and CFG as defined on slide 12.
Claim: $\delta\left(q_{0}, w\right)=q$ iff G generates $w q$.
If $\delta\left(q_{0}, w\right)=q$ then G generates $w q$ - by induction on w.
case $w=\epsilon$:
$\delta\left(q_{0}, w\right)=\delta\left(q_{0}, \epsilon\right)=q_{0}$.
$q_{0} \stackrel{*}{\Rightarrow} q_{0}$ because any string derives itself in zero steps.
case $w=x \cdot c: \delta\left(q_{0}, w\right)=\delta\left(\delta\left(q_{0}, x\right), c\right)=q$ by the definition of δ for strings. $q_{0} \stackrel{*}{\Rightarrow} x \delta\left(q_{0}, x\right)$ by the induction hypothesis. Thus, $q_{0} \stackrel{*}{\Rightarrow} w q$ as required.
If G generates $w q$ then $\delta\left(q_{0}, w\right)=q$ - by induction on k, the length of the derivation.

- see the next slide.

DFA proof (cont.)

If G generates $w q$ then $\delta\left(q_{0}, w\right)=q$ - by induction on k, the length of the derivation.

- case $k=0$:
$q_{0} \stackrel{0}{\Rightarrow} q_{0}=\epsilon q_{0}$, and $\delta\left(q_{0}, w\right)=\delta\left(q_{0}, \epsilon\right)=q_{0}$.
- case $k>0$:

By the induction hypothesis, there is some string $u \in \Sigma^{*}$ and some state $p \in Q$ such that $q_{0}{ }^{k=1} u p \Rightarrow w q$. Because p is the only variable in $u p$, there must be a rule in R of the form $p \rightarrow x$ such that $u x=w q$. By the construction of R, x is of the form $c q$, and $\delta(p, c)=q$. Thus, $w=u c$ and $\delta\left(q_{0}, w\right)=q$ as required.

Remarks on the proofs

- I wrote these proofs to provide some more examples of proofs for the students in class who said that they would like to see more examples.
- While it seemed more intuitive to go from regular expressions to CFGs than to go from DFAs to CFGs, the latter proof turned out to be simpler.
- The basic ideas behined the regular expression to CFG proof were pretty simple. For each of the six ways to construct a regular expression, I showed a corresponding CFG. The tedium was that this created six lemmas that needed to be proven, and the last three needed some effort.
- In particular, the proofs get a bit more involved because they had nested inductions. The outer induction was over the definition of regular expressions. For some of the β^{*} case, there was in inner induction over the number of concatenated strings in the asteration.
- The DFA to CFG proof was comparativly simple. It involved creating a CFG that simulate the DFA. The string at each step of a derivation is the string of symbols that the DFA has read so far followed by the current state of the DFA.
- If the current state is accepting, the CFG can replace the state with ϵ and thus complete the derivation.

