
Context Free Languages
Mark Greenstreet, CpSc 421, Term 1, 2008/09

24 September 2008 – p.1/17

Lecture Outline
Context Free Languages

v anbn – One More Time

v Formal Definition

v More Examples

24 September 2008 – p.2/17

anbn – one more time
v Let A = anbn. A is not regular.

v Here’s an inductive definition of the language. A string, w, is in A iff
v w = ǫ, or

v There is a string, x ∈ A such that w = axb.

v Can we formalize this approach?
v Why formalize?

We formalize the definition of languages so we can reason about properties
that every language in some class has. That way, we don’t have to prove
properties individually.

v Why not inductive definitions with English?

Because it’s not possible/practical to determine what can and cannot be said

in English. How would you write an English sentence to state something that

can’t be said in English?

24 September 2008 – p.3/17

A Notation for Describing anbn

v S → ǫ | a S b

v A string is in the language if we can derive it from S using these
two rules.

v Example: aaabbb

S → a S b

→ aa S bb

→ aaa S bbb

→ aaa ǫ bbb = aaabbb

a a a b b bε

S

S

S

S

24 September 2008 – p.4/17

#0’s = #1’s
v Let B be the language of strings that have an equal number of 0’s

and 1’s.

v From the Sept. 5 notes,
v w = ǫ; or
v There is a string x in B such that w = 0x1 or w = 1x0; or

v There are strings x and y in B such that w = xy.

v Can we write this in our new notation?

24 September 2008 – p.5/17

#0’s = #1’s
v Let B be the language of strings that have an equal number of 0’s

and 1’s.

v From the Sept. 5 notes,
v w = ǫ; or
v There is a string x in B such that w = 0x1 or w = 1x0; or

v There are strings x and y in B such that w = xy.

v Can we write this in our new notation?

B → ǫ

| 0 B 1

| 1 B 0

| B B

24 September 2008 – p.5/17

#0’s < #1’s
v Let C be the language of strings that have an fewer 0’s than 1’s.

v String w is in C iff
v There are strings x and y in B such that w = x1y, where B is the set of all

strings with an equal number of ones and zeros as defined in the problem
statement.

v There are strings x and y in C such that w = xy.

v In our new notation, this is:

24 September 2008 – p.6/17

#0’s < #1’s
v Let C be the language of strings that have an fewer 0’s than 1’s.

v String w is in C iff
v There are strings x and y in B such that w = x1y, where B is the set of all

strings with an equal number of ones and zeros as defined in the problem
statement.

v There are strings x and y in C such that w = xy.

v In our new notation, this is:

C → B 1 B | C C

B → ǫ | B B

| 0 B 1 | 1 B 0

24 September 2008 – p.6/17

Formalizing Our Notation
v A context-free grammar (CFG) is a 4-tuple, (V, Σ, R, S) where

v V is a finite set of variables.
v Σ is a finite set of terminals. Σ ∩ V = ∅.
v R is a finite set of rules.

v Each rule is a tuple of the form (v, s) where v ∈ V is a variable and
s ∈ (V ∪ Σ)∗ is as string of variables and/or terminals (possilby empty).

v The interpretation is that any occurrence of v can be replaced with s.
v We will write v → s to indicate the tuple (v, s).

v S ∈ V is the start variable.

24 September 2008 – p.7/17

Derivations
CFGs give a set of rules for deriving strings of symbols
and terminals.

v A single step derivation:
v If w = uAv with w, u, v ∈ (V ∪ Σ)∗ and A ∈ V ,
v and A → x ∈ R,
v Then w ⇒ uxv,

v and we say that w yields uxv.

v A multi-step derivation
v We say that w derives x iff

v We can find strings v0, v1, . . . , vm such that
v v0 = w; and vm = x; and
v vi−1 ⇒ vi for all i ∈ 1 . . . m.

v We write w
∗

⇒ x if w derives x.

24 September 2008 – p.8/17

The Language Generated by a CFG
v Let G = (V, Σ, R, S) be a CFG.

v The language generated by G is L(G) where

L(G) = {s ∈ Σ∗ | S
∗

⇒ s}

v Note that if S
∗

⇒ w, w is a string in (V ∪ Σ)∗.
In other words, a derivation can, in general, produce a mixture of
variables and terminals.

v However, L(G) only includes strings with no variables –
all variables must have been expanded into strings of terminals.

24 September 2008 – p.9/17

Regular Languages are Context Free
Proof: by induction on the definition of regular
expressions.

v Let α be a regular expression with alphabet Σ.

v Case α = ∅: Let G = ({S}, Σ, ∅, S).
With no productions, S cannot generate any string of terminals. Thus, L(G) = ∅.

v Case α = ǫ: Let G = ({S}, Σ, {S → ǫ}, S).
Only one derivation is possible: the single step derivation that yields ǫ. Thus,
L(G) = {ǫ}.

v Case α = c, for some c ∈ Σ: Let G = ({S}, Σ, {S → c}, S).
L(G) = {c} by an argument like that for the previous case.

v Case α = β ∪ γ:
Let Gβ = (Vβ , Σ, Rβ , Sβ) and Gγ = (Vγ , Σ, Rγ , Sγ) be CFGs that generate L(β)

and L(γ) respectively. We assume that Vβ and Vγ are dijoint.
Let G = ({S} ∪ Vβ ∪ Vγ , Σ, {S → Sβ , S → Sγ} ∪ Rβ ∪ Rγ , S)

where S 6∈ Vβ ∪ Vγ .
L(G) = L(Gβ) ∪ L(Gγ) = L(β) ∪ L(γ) = L(β ∪ γ)

Proof details are on slide 18.
24 September 2008 – p.10/17

Regular Languages. . . (cont)
v Case α = β · γ:

Let Gβ and Gγ be CFGs that generate L(β) and L(γ) as above.
Let G = ({S} ∪ Vβ ∪ Vγ , Σ, {S → Sβ Sγ} ∪ Rβ ∪ Rγ , S)

where S 6∈ Vβ ∪ Vγ .
L(G) = L(Gβ) · L(Gγ) = L(β) · L(γ) = L(β · γ)

Proof details are on slide 22.

v Case α = β∗: Let Gβ generate L(β) as above.
Let G = ({S} ∪ Vβ , Σ, {S → S Sβ , S → ǫ} ∪ Rβ , S)

L(G) = L(Gβ)∗ = L(β∗). Proof details are on slide 24.

24 September 2008 – p.11/17

Regular Languages are Context Free
Proof by building a CFG that simulates a DFA.

v Let A be a regular language.

v Let M = (Q, Σ, δ, q0, F) be a DFA that recognizes A.
Assume that Q and Σ are disjoint.

v Define R as shown below:

R = {(q → cp) | c ∈ Σ and δ(q, c) = p}

∪ {(q → ǫ) | q ∈ F}

v Let G = (Q, Σ, R, q0) be a CFG. L(G) = A.

v Proof:
v We can prove by induction that δ(q0, w) = q iff G generates wq (see slide 26).
v If G generates wq and q ∈ F , then G generates w.

Thus, L(G) ⊇ A.

v For the other direction, we prove by induction on the derivation that if q0
∗

⇒ w,
then either w = wq where δ(q0, w) = q, or w ∈ A.
Thus, L(G) ⊆ A. 24 September 2008 – p.12/17

Arithmetic Expressions
G = (V, Σ, R,Expr), where

V = {Expr ,ExprList ,NonEmptyExprList}

Σ = {INTEGER,IDENTIFIER,PLUS,MINUS,

TIMES,DIVIDE,EXP,

LPAREN,RPAREN,COMMA}

Expr → INTEGER | IDENTIFIER

| Expr PLUS Expr | Expr MINUS Expr

| Expr TIMES Expr | Expr DIVIDE Expr

| Expr EXP Expr | LPAREN Expr RPAREN

| IDENTIFIER LPAREN ExprList RPAREN

ExprList → ǫ | NonEmptyExprList

NonEmptyExprList → Expr

| NonEmptyExprList COMMA Expr .

24 September 2008 – p.13/17

Arithmetic Terminals
Regular Expressions:

INTEGER ≡ DIGIT DIGIT∗

DIGIT ≡ 0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9

IDENTIFIER ≡ ISTART ITAIL∗

ISTART ≡ A ∪ B ∪ . . . ∪ Z ∪ a ∪ b ∪ . . . ∪ z

ITAIL ≡ ISTART ∪ DIGIT

PLUS ≡ + MINUS ≡ -

TIMES ≡ * DIVIDE ≡ /

EXP ≡ ∧ COMMA ≡ ,

LPAREN ≡ (RPAREN ≡)

24 September 2008 – p.14/17

Arithmetic Example
2 + 3 ∗ 4

Expr ⇒ Expr PLUS Expr

⇒ INTEGER PLUS Expr

⇒ INTEGER PLUS Expr TIMES Expr

⇒ INTEGER PLUS INTEGER TIMES Expr

⇒ INTEGER PLUS INTEGER TIMES INTEGER

24 September 2008 – p.15/17

The Grammar of Java
See

v http://www.daimi.au.dk/dRegAut/JavaBNF.html, or

v http://www.cui.unige.ch/db-
research/Enseignement/analyseinfo/JAVA/BNFindex.html

24 September 2008 – p.16/17

The coming week
Reading:

September 24 (Today): Introduction to Context Free Languages – Sipser 2.1.
Lecture will cover through “Designing Context-Free Grammars” (i.e. pages
99-105).

September 26 (Friday): Chomsky Normal Form
The rest of Sipser 2.1 (i.e. pages 105–109).

September 29 (Monday): Push-Down Automata – Sipser 2.2. Lectue will cover through
page 114: “Examples of Push-Down Automata.”

October 1 (A week from today): Equivalence of CFGs and PDAs
The rest of Sipser 2.2.

Homework:

September 26 (Friday): Homework 2 due. Homework 3 goes out (due Oct. 3).
The due date for homework 3 will be strict – no late assignments will be
accepted.

Midterm: Oct. 8

24 September 2008 – p.17/17

Proof for α = β ∪ γ
L(G) ⊆ L(β ∪ γ)

v Let s ∈ L(G). Thus, S
∗

⇒ w.
v Because S 6= w, the derivation must have at least one step, in our notation

S ⇒ u
∗

⇒ w.
v u must be either Sβ or Sγ from the definition of R (there are no other rules for

S).
v If u = Sβ , then w ∈ L(Gβ) by the construction of G. The induction hypothesis

yields L(Gβ) = L(β), and thus u ∈ L(β ∪ γ) by the definition of the languages
generated by regular expressions.

v If u = Sγ , the argument is similar.

L(G) ⊇ L(β ∪ γ) (see next slide).

24 September 2008 – p.18/17

Proof for α = β ∪ γ (cont.)
L(G) ⊇ L(β ∪ γ)

v If w ∈ L(β ∪ γ), then either w ∈ L(β) or w ∈ L(γ). We’ll assume w ∈ L(β);
the other case is equivalent.

v w ∈ L(Gβ) by the induction hypothesis.

v Sβ
∗

⇒ w by the definition of L(Gβ)

v S ⇒ Sβ
∗

⇒ w by the definition R.

v w ∈ L(G) by the definition of L(G).

Thus, L(G) = L(β ∪ γ) as claimed.

24 September 2008 – p.19/17

A lemma for concatenation
v Let G = (V, Σ, R, S) be a CFG and let x1, x2 ∈ (V ∪ Σ)∗ be strings of varibles

and/or terminals.

v x1 x2
∗

⇒ w iff there are strings w1, w2 ∈ (V ∪Σ)∗ such that x1
∗

⇒ w1 and x2
∗

⇒ w2.

v Proof: If you think this is obvious, feel free to skip to slide 22.

v If x1 x2
∗

⇒ w, then ∃w1, w2 s.t. x1
∗

⇒ w1, x2
∗

⇒ w2, and w = w1w2.
By induction on the length of the derivation.
v If the derivation has zero steps, then w = x1 x2, and the result holds trivially

(i.e. x
∗

⇒ x for any string x ∈ (V ∪ Σ)∗).
v If the derivation has k + 1 steps, then x1 x2

k
⇒ u ⇒ w.

· By the induction hypothesis, we can write u = u1u2 where x1
∗

⇒ u1 and

x2
∗

⇒ u2.
· Furthermore, we can write u = yV z where V → t and w = ytz.
· If |yV | ≤ |u1|, then we write u1 = yV z1 and note that z = z1u2. Then

u1 ⇒ ytz1, and u2
0
⇒ u2, and w = (ytz1) · u2; showing the claim.

If |yV | > |u1|, then a similar argument applies where the last step is
applied to u2.

v If x1
∗

⇒ w1 and x2
∗

⇒ w2, then x1x2
∗

⇒ w1w2. See next slide.

24 September 2008 – p.20/17

A lemma for concatenation (cont.)
v Proof (cont.)

If x1
∗

⇒ w1 and x2
∗

⇒ w2, then x1x2
∗

⇒ w1w2.

We show that x1x2
∗

⇒ w1x2
∗

⇒ w1w2.

We show that x1x2
∗

⇒ w1x2 by induction on the length of the derivation for

x1
∗

⇒ w1.
v If x1

0
⇒ w1, then w1 = x1 and the result holds trivially.

v If x1
k+1
⇒ w1, then x1

k
⇒ u ⇒ w1.

· By the induction hypothesis, x1x2
∗

⇒ ux2.

· Because u ⇒ w1, we have x1x2
∗

⇒ w1x2 as claimed.

The proof that w1x2
∗

⇒ w1w2 is similar.

�

24 September 2008 – p.21/17

Proof for α = β · γ
L(G) ⊆ L(β · γ)

v Let w ∈ L(G). Thus, S
∗

⇒ w.
v Because S 6= w, the derivation must have at least one step, in our notation

S ⇒ u
∗

⇒ w.
v u must be Sβ Sγ from the definition of R (there are no other rules for S).

v By the lemma from slide 20, there are strings wβ and wγ such that Sβ
∗

⇒ wβ ,

Sγ
∗

⇒ wγ , and w = wβ · wγ .
v By the construction of G, wβ ∈ L(Gβ) and the induction hypothesis yields

wβ ∈ L(β). Likewise, wγ ∈ L(γ).

v Thus, w = wβ · wγ ∈ L(β) · L(γ) ∈ L(β · γ) as required.

L(G) ⊇ L(β · γ) (see next slide).

24 September 2008 – p.22/17

Proof for α = β · γ (cont.)
L(G) ⊇ L(β · γ)

v If w ∈ L(β · γ), then there are strings wβ and wγ such that wβ ∈ L(β),
wγ ∈ L(γ), and w = wβ · wγ .

v By the induction hypothesis, Sβ
∗

⇒ wβ and Sγ derives wγ .

v By the lemma from slide 20, SβSγ
∗

⇒ wβwγ .
v From the construction of G, S → Sβ Sγ .

v Thus, S ⇒ Sβ , Sγ
∗

⇒ w1w2 = w.

v
∴ w ∈ L(G) as required.

Thus, L(G) = L(β · γ) as claimed.

24 September 2008 – p.23/17

Proof for α = β∗

L(G) ⊆ L(β∗)
v Let w ∈ L(G). Thus, S

∗

⇒ w.
v Because S 6= w, the derivation must have at least one step, in our notation

S ⇒ u
∗

⇒ w.
v u must be either ǫ or S Sβ from the definition of R (there are no other rules for

S).
v If u = ǫ, then w = ǫ ∈ L(β∗)

v Otherwise, u = S Sβ , and by the lemma from slide 20, we can find w1 and w2

such that S
∗

⇒ w1, Sβ
∗

⇒ w2 and w = w1w2.
v w1 ∈ L(β∗) by induction on the derivation.
v w2 ∈ L(β) by the induction hypothesis for our induction on the definition of

regular expressions.

v Thus, w1w2 ∈ L(β) by the definition of L(β) as required.

L(G) ⊇ L(β∗) (see next slide).

24 September 2008 – p.24/17

Proof for α = β · γ (cont.)
L(G) ⊇ L(β∗)

v If w ∈ L(β∗), then there is some k ≥ 0 and strings x1, . . . xk such that

w =
Qk

i=1
xi (with

Q

denoting concatenation). Our proof is by induction on k,

and our induction hypothesis is S
∗

⇒
Qk

i=1
xi.

v If k = 0, then w = ǫ ∈ L(G) because S → ǫ.

v If k > 0, then we note that
Qk

i=0
xi =

“

Qk−1

i=0
xi

”

xk.

v S
∗

⇒
Qk−1

i=0
xi by the induction hypothesis.

v Sβ
∗

⇒ xk by the induction hypothesis for our induction on the definition of
regular expressions.

v Thus, S ⇒ S Sβ
∗

⇒
Qk

i=0
xi =

“

Qk−1

i=0
xi

”

xk by the definition of G and the

lemma from slide 20.

Thus, L(G) = L(β∗) as claimed.

24 September 2008 – p.25/17

DFA proof
Let M and G be a DFA and CFG as defined on slide 12.

Claim: δ(q0, w) = q iff G generates wq.

If δ(q0, w) = q then G generates wq – by induction on w.
v case w = ǫ:

δ(q0, w) = δ(q0, ǫ) = q0.

q0
∗

⇒ q0 because any string derives itself in zero steps.

v case w = x · c: δ(q0, w) = δ(δ(q0, x), c) = q by the definition of δ for strings.

q0
∗

⇒ xδ(q0, x) by the induction hypothesis. Thus, q0
∗

⇒ wq as required.

If G generates wq then δ(q0, w) = q – by induction on k, the length of
the derivation.

v see the next slide.

24 September 2008 – p.26/17

DFA proof (cont.)
If G generates wq then δ(q0, w) = q – by induction on k, the length of

the derivation.
v case k = 0:

q0
0
⇒ q0 = ǫq0, and δ(q0, w) = δ(q0, ǫ) = q0.

v case k > 0:

By the induction hypothesis, there is some string u ∈ Σ∗ and some state p ∈ Q

such that q0
k−1
⇒ up ⇒ wq. Because p is the only variable in up, there must be a

rule in R of the form p → x such that ux = wq. By the construction of R, x is of

the form cq, and δ(p, c) = q. Thus, w = uc and δ(q0, w) = q as required.

24 September 2008 – p.27/17

Remarks on the proofs
v I wrote these proofs to provide some more examples of proofs for the students in

class who said that they would like to see more examples.

v While it seemed more intuitive to go from regular expressions to CFGs than to go
from DFAs to CFGs, the latter proof turned out to be simpler.

v The basic ideas behined the regular expression to CFG proof were pretty simple.
For each of the six ways to construct a regular expression, I showed a
corresponding CFG. The tedium was that this created six lemmas that needed to be
proven, and the last three needed some effort.

v In particular, the proofs get a bit more involved because they had nested inductions.
The outer induction was over the definition of regular expressions. For some of the
β∗ case, there was in inner induction over the number of concatenated strings in the
asteration.

v The DFA to CFG proof was comparativly simple. It involved creating a CFG that
simulate the DFA. The string at each step of a derivation is the string of symbols that
the DFA has read so far followed by the current state of the DFA.

v If the current state is accepting, the CFG can replace the state with ǫ and thus

complete the derivation.

24 September 2008 – p.28/17

	Lecture Outline
	$	ta ^n 	tb ^n$ -- one more time
	A Notation for Describing $	ta ^n 	tb ^n$
	$#	tz $'s $=$ $#	to $'s
	$#	tz $'s $<$ $#	to $'s
	Formalizing Our Notation
	Derivations
	The Language Generated by a CFG
	Regular Languages are Context Free
	Regular Languagesldots (cont)
	Regular Languages are Context Free
	Arithmetic Expressions
	Arithmetic Terminals
	Arithmetic Example
	The Grammar of Java
	The coming week
	Proof for $alpha = �eta cup gamma $
	Proof for $alpha = �eta cup gamma $ (cont.)
	A lemma for concatenation
	A lemma for concatenation (cont.)
	Proof for $alpha = �eta cdot gamma $
	Proof for $alpha = �eta cdot gamma $ (cont.)
	Proof for $alpha = �eta ^*$
	Proof for $alpha = �eta cdot gamma $ (cont.)
	DFA proof
	DFA proof (cont.)
	Remarks on the proofs

