Context Free Languages

Mark Greenstreet, CpSc 421, Term 1, 2008/09

24 September 2008 — p.1/17

Lecture Outline

Context Free Languages

® 2"b" — One More Time

@® Formal Definition

@ More Examples

24 September 2008 — p.2/17

a"b” — one more time

® Let A=a"b™. Aisnotregular.

® Here’s an inductive definition of the language. A string, w, is in A iff

® w—cor

@ Thereis a string, z € A such that w = azb.

® Can we formalize this approach?

@® Why formalize?
We formalize the definition of languages so we can reason about properties
that every language in some class has. That way, we don’t have to prove
properties individually.

@ Why not inductive definitions with English?
Because it’s not possible/practical to determine what can and cannot be said

in English. How would you write an English sentence to state something that
can’t be said in English?

24 September 2008 — p.3/17

A Notation for Describing ab”

® S5 —- ¢ | ash

® A string is in the language if we can derive it from S using these
two rules.

® Example: aaabbb

;

S — asShb S

— aa sSbb ¢

_. aaa S bbb f

— aaa € bbb = aaabbb S
a a a € b b b

24 September 2008 — p.4/17

]]
#0's =#1's
® Let B be the language of strings that have an equal number of O’s
and 1’s.

® From the Sept. 5 notes,
® w=c¢or
@ Thereis a string in B such that w = 0z1 or w = 1z0; or

@ There are strings = and y in B such that w = zv.

® Can we write this in our new notation?

24 September 2008 — p.5/17

]]
#0's =#1's
® Let B be the language of strings that have an equal number of O’s
and 1’s.

® From the Sept. 5 notes,
® w=c¢or
@ Thereis a string in B such that w = 0z1 or w = 1z0; or

@ There are strings = and y in B such that w = zv.

® Can we write this in our new notation?

B — €

O0B1
1 B0
B B

24 September 2008 — p.5/17

#0's < #1's

® Let C be the language of strings that have an fewer 0’s than 1’s.

® String wis in C iff

@ There are strings = and y in B such that w = x1y, where B is the set of all
strings with an equal number of ones and zeros as defined in the problem
statement.

@ There are strings = and y in C such that w = zy.

@® In our new notation, this is:

24 September 2008 — p.6/17

#0's < #1's

® Let C be the language of strings that have an fewer 0’s than 1’s.

® String wis in C iff

@ There are strings = and y in B such that w = x1y, where B is the set of all
strings with an equal number of ones and zeros as defined in the problem

Sstatement.

@ There are strings = and y in C such that w = zy.

@® In our new notation, this is:

¢ — B1B

B —
|

€

0B1

CC
B B
1 B0

24 September 2008 — p.6/17

Formalizing Our Notation

® A context-free grammar (CFG) is a 4-tuple, (V, 3, R, S) where

@® V is afinite set of variables.
® > is afinite set of terminals. XNV = 0.

® Ris afinite set of rules.
@ Each rule is a tuple of the form (v, s) where v € V is a variable and

s € (V UX)* is as string of variables and/or terminals (possilby empty).
@ The interpretation is that any occurrence of v can be replaced with s.
@® We will write v — s to indicate the tuple (v, s).

® S c Visthe start variable.

24 September 2008 — p.7/17

Derivations

CFGs give a set of rules for deriving strings of symbols
and terminals.

® A single step derivation:
® Ifw=uAvwithw,u,vc (VUX)*and A€V,
® and A — z €R,
® Thenw = uxw,

@ and we say that w yields uzwv.

® A multi-step derivation

@® We say that w derives z iff
@® We can find strings vg, v1, . . . , vm Such that
® v, = w; and v, = z; and
® vi—1 = wv;foralliel...m.

® \We write w = z if w derives .

24 September 2008 — p.8/17

The Language Generated by a CFG

® LetG=(V,X,R,S) be a CFG.
® The language generated by G is L(G) where

LG) = {sex* |8 s}

® Note that if S = w, wis a string in (V U X)*.
In other words, a derivation can, in general, produce a mixture of
variables and terminals.

® However, L(G) only includes strings with no variables —
all variables must have been expanded into strings of terminals.

24 September 2008 — p.9/17

Regular Languages are Context Free

Proof: by induction on the definition of regular
expressions.

@ Let o be aregular expression with alphabet .

® Casea=10:LetG = ({5},%,0,9).
With no productions, S cannot generate any string of terminals. Thus, L(G) = 0.

® Casea=c LetG = ({5},%3,{S — €},9).
Only one derivation is possible: the single step derivation that yields €. Thus,

L(G) = {¢€}.

® Casea=c,forsomec € ¥: LetG = ({S},%,{S — ¢}, 5).
L(G) = {c} by an argument like that for the previous case.

® Casea=pUn:
Let Gg = (V3,2, Rg, Sg) and G = (V4, %, Ry, S,) be CFGs that generate L(3)
and L(~y) respectively. We assume that Vi3 and V, are dijoint.
LetG = ({S}uVgUV,,E,{S — S3,5 = Sy} URgUR,,S)
where S ¢ Vg U V.
L(G) = L(Gp) U L(G) = L(B) U L(y) = L(BU)

Proof details are on slide |18.
24 September 2008 — p.10/17

Regular Languages. .. (cont)

® Casea=3 7~
Let Gz and G-, be CFGs that generate L(3) and L(~) as above.
LetG = ({S}uVguV,, X, {S — SgSy} URgUR,,S)
where S & Vg U V.
L(G) = L(Gp) - L(G~) = L(B) - L() = L(B - 7)
Proof details are on slide 22.

@ Case a = 3*: Let G generate L(3) as above.
Let G = ({S}UVg,E,{SﬁSSg,SﬁG}URg,S)

L(G) = L(Gg)* = L(B*). Proof details are on slide 24.

24 September 2008 — p.11/17

Regular Languages are Context Free
Proof by building a CFG that simulates a DFA.

@ Let A be aregular language.

® Let M =(Q,%,6,qo, F) be a DFA that recognizes A.
Assume that Q) and X are disjoint.

@® Define R as shown below:

R = {(q — cp) | ce Xandd(q,c) = p}
U {(g—elqgeF}

Let G = (Q, %, R,q0) be a CFG. L(G) = A.

Proof:
@ We can prove by induction that 6(qo, w) = ¢ iff G generates wq (see slide 26).

@ |If G generates wqg and ¢ € F, then G generates w.
Thus, L(G) D A,

@ For the other direction, we prove by induction on the derivation that if go = w,
then either w = wq where §(qo, w) = ¢, or w € A.

Thus, L(G) C A. 24 September 2008 — p.12/17

Arithmetic Expressions

G = (V, %, R, Expr), where

V= {Expr, ExprList, NonEmptyExprList}
> = {INTEGER I DENTI FI ER, PLUS, M NUS,
TI MES, DI VI DE, EXP,
L PAREN, RPAREN, COMVA}

Expr — | NTEGER | DENTI FI ER
Expr PLUS Expr Expr M NUS Expr
Expr TI NES Expr Expr DI VI DE Expr
Expr EXP Expr LPAREN Exzpr RPAREN
| DENTI FI ER LPAREN EzxprList RPAREN

Exprlist — e | NonEmptyEzprList
NonEmptyEzprList — Expr
| NonEmptyEzxprList COWA Expr .

24 September 2008 — p.13/17

Arithmetic Terminals

Regular Expressions:

| NTEGER
DA T

| DENTI FI ER
| START

| TAI L

PLUS

TI MVES

EXP

L PAREN

DA TD A T*
oulu2Uu3udusubur/7usu9

| START | TAI L*

AUBU...UZUauUbu...uz
| STARTUD A T

+

*

A
(

M NUS
DI VI DE
COMVA
RPAREN

/

)

24 September 2008 — p.14/17

Arithmetic Example

2+ 3x%x4

Expr

=
=
=
=
=

Fxpr PLUS Ezpr

| NTEGER PLUS Ezpr

| NTEGER PLUS Expr TI MES Exzpr

| NTEGER PLUS | NTEGER Tl MES Ezpr

| NTEGER PLUS | NTEGER TI MES | NTEGER

24 September 2008 — p.15/17

The Grammar of Java

See
® nhttp://www.daimi.au.dk/dRegAut/JavaBNF.html, or

® nhttp://www.cui.unige.ch/db-
research/Enseignement/analyseinfo/JAVA/BNFindex.html

24 September 2008 — p.16/17

The coming week

Reading:

September 24 (Today): Introduction to Context Free Languages — Sipser 2.1.
Lecture will cover through “Designing Context-Free Grammars” (i.e. pages
99-105).

September 26 (Friday): Chomsky Normal Form
The rest of Sipser 2.1 (i.e. pages 105-109).

September 29 (Monday): Push-Down Automata — Sipser 2.2. Lectue will cover through
page 114: “Examples of Push-Down Automata.”

October 1 (A week from today): Equivalence of CFGs and PDAs
The rest of Sipser 2.2.

Homework;

September 26 (Friday): Homework 2 due. Homework 3 goes out (due Oct. 3).
The due date for homework 3 will be strict — no late assignments will be
accepted.

Midterm: Oct. 8

24 September 2008 — p.17/17

Proof for a = 5 U~

L(G) € L(BU~)
® Letsc L(G). Thus, S = w.

@ Because S # w, the derivation must have at least one step, in our notation
S=u> w.

@ u must be either S or S, from the definition of R (there are no other rules for
S).

® ifu=Sg, thenw € L(Gp) by the construction of G. The induction hypothesis

yields L(Gg) = L(3), and thus v € L(B U y) by the definition of the languages
generated by regular expressions.

® ifu=5,, the argument is similar.

L(G) 2 L(B U~) (see next slide).

24 September 2008 — p.18/17

Proof for o« = 5 U ~v (cont.)

L(G) 2 L(BU~)

® fwe L(BU~), then either w € L(B) or w € L(v). We'll assume w € L(3);
the other case is equivalent.

® w € L(Gp) by the induction hypothesis.
® S5 = w by the definition of L(Gp)

® S = S5 = w by the definition R.

® w < L(G) by the definition of L(G).

Thus, L(G) = L(8 U~) as claimed.

24 September 2008 — p.19/17

A lemma for concatenation

LetG = (V,X,R,S)beaCFGandletz1,x2 € (V U X)* be strings of varibles
and/or terminals.

r1 2 = w iff there are strings w1, we € (V UX)* such that z; = w; and z2 = ws.

Proof: If you think this is obvious, feel free to skip to slide 22.

® fz; 2y = w,then Jw1, w2 S.t. 21 5wy, o0 = wo, and w = wiwo.
By induction on the length of the derivation.
@ |f the derivation has zero steps, then w = =1 =2, and the result holds trivially
(i.e. = x for any string z € (V U X)*).

@ | the derivation has k + 1 steps, then x1 x» LN
By the induction hypothesis, we can write © = u;us Where z1 = u; and
xro 5 us.
Furthermore, we can write u = yVz where V — t and w = ytz.
If |yV'| < |u1|, then we write u; = yV z; and note that z = zyu2. Then

w1 = ytz1, and ug % ug, and w = (ytz1) - ug; showing the claim.
If |yV'| > |u1], then a similar argument applies where the last step is
applied to us.

® Ifz; = wy and 20 = we, then z122 = wiws. See next slide.
24 September 2008 — p.20/17

A lemma for concatenation (cont.)

® Proof (cont.)

If 21 = wy and zo = wo, then z1zo = wiwo.
We show that z1 x5 = w122 = w1Ww2.
We show that 2125 = w1z by induction on the length of the derivation for

1 ;> w1 .
® Iz, > wi,then wi = x1 and the result holds trivially.
@ If :clkg w1, then xq g U = wi.
By the induction hypothesis, z1z2 = uz2.
Because u = w1, We have z1x2 = wiz2 as claimed.
The proof that wiza = wiws is similar.
L]

24 September 2008 — p.21/17

Proof for a« = 3 -

L(G) € L(B-v)
® Letw e L(G). Thus, S = w.
@ Because S # w, the derivation must have at least one step, in our notation

S = u=w.
u must be Sg S, from the definition of R (there are no other rules for S).

By the lemma from slide 20, there are strings wg and w~ such that Sg = wg,
S~ = w~, and w = wg - w~.

@ By the construction of G, wg € L(Gg) and the induction hypothesis yields
wg € L(B). Likewise, w~ € L(7).

® Thus, w =wg-wy € L(B) - L(y) € L(B - v) as required.

L(G) 2 L(B - v) (see next slide).

24 September 2008 — p.22/17

Proof for o« = 3 - v (cont.)

L(G) 2 L(G -)

® fw e L(B-), then there are strings wg and w~ such that wg € L(B),
w~ € L(7), and w = wg - w,.

@ By the induction hypothesis, Sg = wg and Sy derives w- .

@® By the lemma from slide 20, S35, = wgw-.
@® From the construction of G, S — S5 S,.

® Thus, S = S5,5, = wiws = w.

® . we L(G) as required.
Thus, L(G) = L(G - ~) as claimed.

24 September 2008 — p.23/17

Proof for a« = *

L(G) € L(57)

Letw € L(G). Thus, S = w.

Because S # w, the derivation must have at least one step, in our notation

S = u = w.

u must be either € or S Sz from the definition of R (there are no other rules for
S).

If u =¢,thenw =€ € L(B*)

Otherwise, u = S Sg, and by the lemma from slide 20, we can find w; and w»
such that S = w1, Sg = w2 and w = wiws.

w1 € L(B*) by induction on the derivation.

wo € L(B) by the induction hypothesis for our induction on the definition of
regular expressions.

Thus, wiws € L(B) by the definition of L(3) as required.

L(G) D L(3*) (see next slide).

24 September 2008 — p.24/17

Proof for o« = 3 - v (cont.)

L(G) 2 L(57)

If w € L(B*), then there is some k > 0 and strings z1, . . . zj such that
w = H,’f:l x; (with] denoting concatenation). Our proof is by induction on k,

and our induction hypothesis is S = [¥_, ;.

If k =0, then w = e € L(G) because S — e.

If & > 0, then we note that H?:o x; = (H,’f;ol :CZ) T

S & [1FZ.) «; by the induction hypothesis.

Sg = 2 by the induction hypothesis for our induction on the definition of
regular expressions.

Thus, § =SS5 5 [1i_g@s = (I1}Z) @) @x by the definition of G and the
lemma from slide [20.

Thus, L(G) = L(B*) as claimed.

24 September 2008 — p.25/17

DFA proof

Let M and GG be a DFA and CFG as defined on slide 12.

Claim: §(qo, w) = q iff G generates wyq.

If 6(q0, w) = q then G generates wq — by induction on w.

® casew=c¢
5(QO7 w) — 5((]07 6) = q0-
go = qo because any string derives itself in zero steps.

® casew ==z c 5(qo,w) = 6(5(qo,), c) = q by the definition of § for strings.

qo = x6(qo, x) by the induction hypothesis. Thus, g0 = wq as required.

If G generates wq then §(qp, w) = ¢ — by induction on k, the length of
the derivation.

@ see the next slide.

24 September 2008 — p.26/17

DFA proof (cont.)

If G generates wq then §(qp, w) = ¢ — by induction on k, the length of
the derivation.

® casek =0:
go = qo = eqo, and §(qo, w) = 8(qo, €) = qo.

® casek > 0:
By the induction hypothesis, there is some string v € ¥* and some state p € Q
such that qok’£>1 up = wq. Because p is the only variable in up, there must be a
rule in R of the form p — «x such that ux = wq. By the construction of R, x is of
the form cq, and 6(p, ¢) = q. Thus, w = uc and §(qo, w) = g as required.

24 September 2008 — p.27/17

Remarks on the proofs

| wrote these proofs to provide some more examples of proofs for the students in
class who said that they would like to see more examples.

While it seemed more intuitive to go from regular expressions to CFGs than to go
from DFAs to CFGs, the latter proof turned out to be simpler.

The basic ideas behined the regular expression to CFG proof were pretty simple.
For each of the six ways to construct a regular expression, | showed a
corresponding CFG. The tedium was that this created six lemmas that needed to be
proven, and the last three needed some effort.

In particular, the proofs get a bit more involved because they had nested inductions.
The outer induction was over the definition of regular expressions. For some of the
B* case, there was in inner induction over the number of concatenated strings in the
asteration.

The DFA to CFG proof was comparativly simple. It involved creating a CFG that
simulate the DFA. The string at each step of a derivation is the string of symbols that
the DFA has read so far followed by the current state of the DFA.

If the current state is accepting, the CFG can replace the state with € and thus

complete the derivation.
24 September 2008 — p.28/17

	Lecture Outline
	$	ta ^n 	tb ^n$ -- one more time
	A Notation for Describing $	ta ^n 	tb ^n$
	$#	tz $'s $=$ $#	to $'s
	$#	tz $'s $<$ $#	to $'s
	Formalizing Our Notation
	Derivations
	The Language Generated by a CFG
	Regular Languages are Context Free
	Regular Languagesldots (cont)
	Regular Languages are Context Free
	Arithmetic Expressions
	Arithmetic Terminals
	Arithmetic Example
	The Grammar of Java
	The coming week
	Proof for $alpha = �eta cup gamma $
	Proof for $alpha = �eta cup gamma $ (cont.)
	A lemma for concatenation
	A lemma for concatenation (cont.)
	Proof for $alpha = �eta cdot gamma $
	Proof for $alpha = �eta cdot gamma $ (cont.)
	Proof for $alpha = �eta ^*$
	Proof for $alpha = �eta cdot gamma $ (cont.)
	DFA proof
	DFA proof (cont.)
	Remarks on the proofs

