The Pumping Lemma

Mark Greenstreet, CpSc 421, Term 1, 2008/09

Lecture Outline

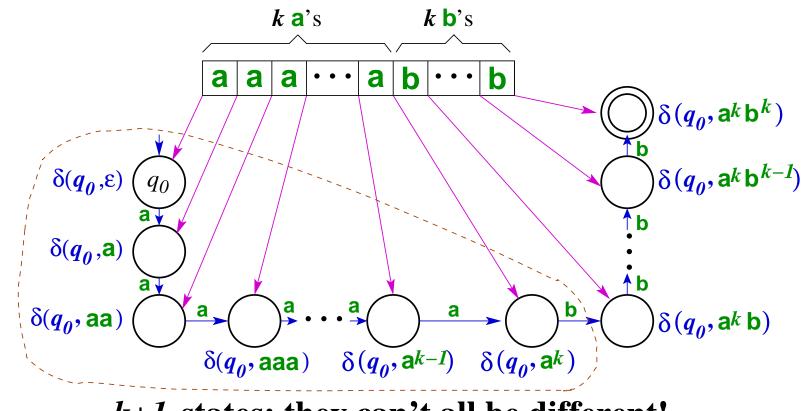
Regular Expressions

The Pumping Lemma

$\mathbf{a}^n \mathbf{b}^n$ is not regular

- Let $\Sigma = \{a, b\}$.
- Let $A = \{s \in \Sigma^* \mid \exists n \in \mathbb{N}. s = a^n b^n\}.$
- At the end of the Sept. 19 lecture, we showed that A is not regular.
- We'll repeat that proof in more detail and show how it can be generalized to give a very powerful way to show that a language is not regular.
 - If A is regular then there is some DFA, M that recognizes A.
 - M has some fixed number of states. Let k be this number.
 - Consider what happens when M reads $a^k b^k$.

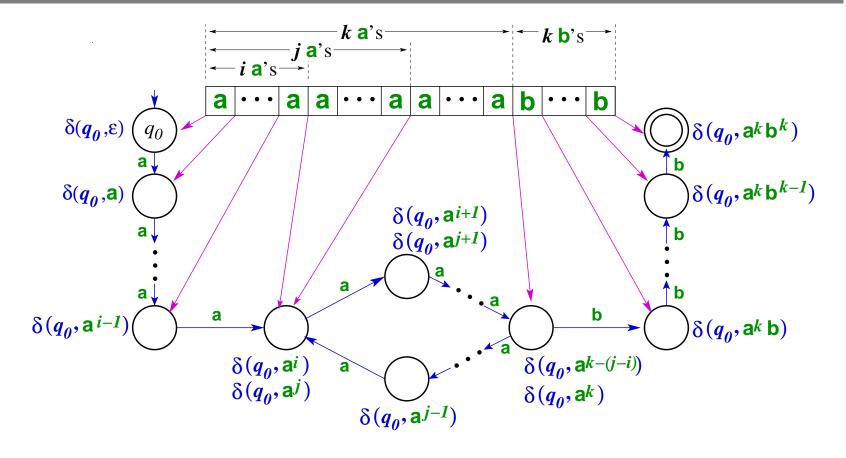
Reading $\mathbf{a}^n \mathbf{b}^n$



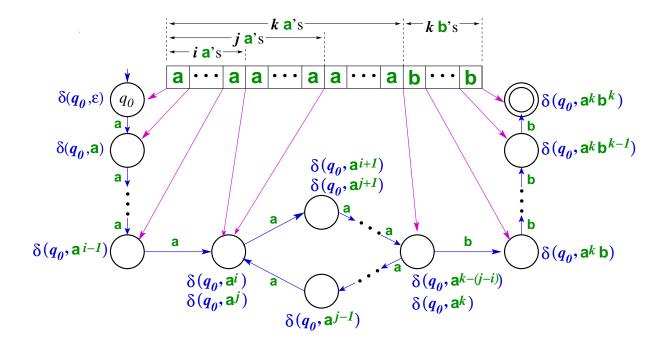
k+1 states: they can't all be different!

By the "Pigeon Hole" principle, there must be *i* and *j* with $0 \le i, j \le k$ and i < j such that the DFA reaches the same state after reading a^i and after reading a^j .

Reading $\mathbf{a}^n \mathbf{b}^n$



Reading $\mathbf{a}^n \mathbf{b}^n$



• Let d = j - i. We chose i < j; therefore d > 0.

- If M accepts $a^k b^k$, then
 - M also accepts $a^{k-d}b^k$.
 - M also accepts $a^{k+hd}b^k$, for any $h \ge 0$.
- Thus, DFA M does not recognize language A.
 - Therefore, A is not regular.

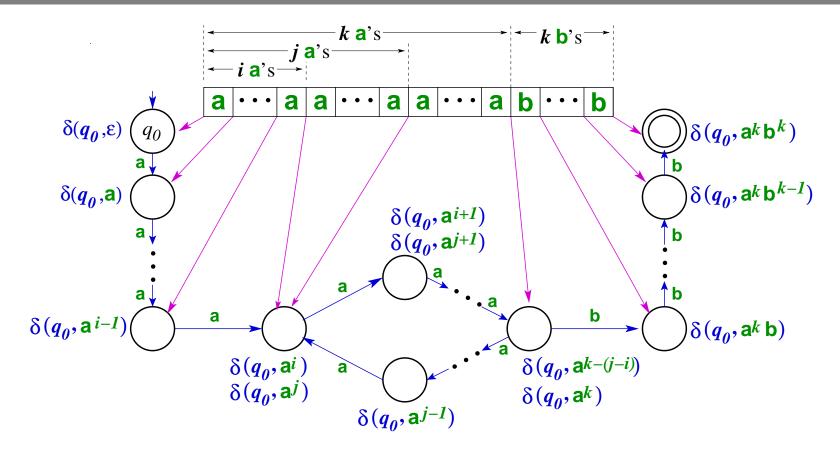
Another non-regular language

- Let $\Sigma = \{a, b\}$ as before.
- Let B = {s ∈ Σ* #a(s) = #b(s)}.
 (#a(s) denotes the number of a's in s and likewise for #b(s).)
- B is not regular.
- Proof:
 - $B \cap (a^*b^*) = a^n b^n$.
 - a*b* is regular.
 - The regular languages are closed under intersection.
 - If B were regular, $a^n b^n$ would be regular as well.
 - $a^n b^n$ is not regular.
 - Therefore, B is not regular.

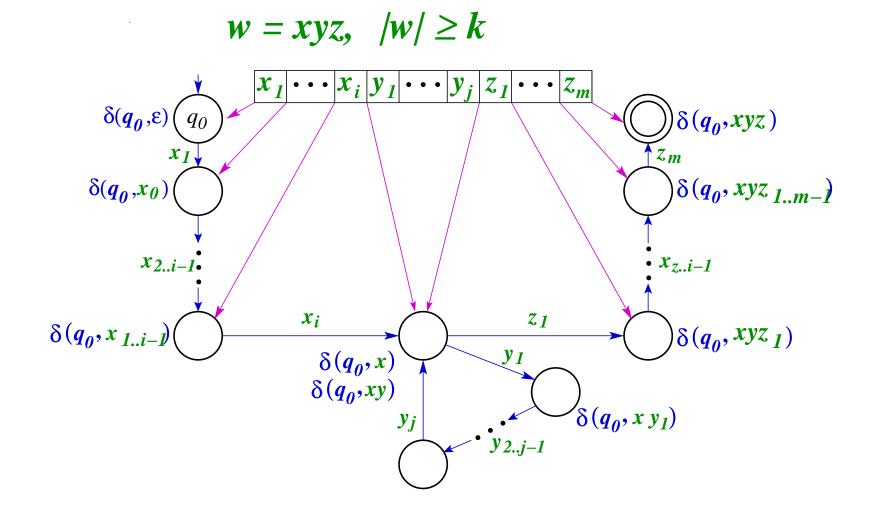
How about $w \cdot w^{\mathcal{R}}$?

- Let $\Sigma = \{a, b\}$ as before.
- Let $C = \{s \in \Sigma^* \; \exists w \in \Sigma. \; s = w \cdot w^{\mathcal{R}}\}.$
- C is not regular, but there isn't an obvious way to conclude from knowing that aⁿbⁿ is not regular.
- Instead, we can generalize our earlier proof.
- The generalization is called the pumping lemma and it gives us a very flexible tool for showing that languages are not regular.

A more general argument



A more general argument



The Pumping Lemma

Let A be a regular language.

- There exists some integer p such that for any string w in language A with $|w| \ge p \dots$
- ... we can find strings x, y, and z such that w = xyz and
 - $\forall i \geq 0. \ xy^i z \in A$,
 - |y| > 0, and
 - $|xy| \leq p$.
- The intuition behind the pumping lemma is that:
 - y is a string that takes a DFA that recognizes A through a cycle of states (i.e. a loop).
 - If |w| is greater than the number of states in a DFA that recognizes A, then the DFA must visit the some state more than once when reading w.
 This provides the cycle.

Pumping Lemma: Some Definitions

- Given a regular language A,
- let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that recognizes A.
- Let p = |Q|.
- Let w be any string in A with $|w| \ge p$.

• Let
$$prefix(w,n) = w$$
, $if |w| \le n$
 $= prefix(x,n)$, $if w = x \cdot c \text{ and } |w| > n$
 $suffix(w,n) = the string s such that $w = prefix(w,n) \cdot s$
 $substring(w,i,j) = suffix(prefix(w,j),i)$$

Informally (ignoring special cases for short strings handled above),

$$prefix(w,n) = w_0 \cdot w_2 \cdots w_{n-1}$$

$$suffix(w,n) = w_n \cdots w_{|w|-1}$$

$$substring(w,i,j) = w_i \cdots w_{j-1}$$

Pumping Lemma: The Proof

- Note that M must visit some state twice by the time it has read prefix(w, p). This is because M only has p states, and it has visited p + 1 states (including the start state) by the time it reads prefix(w, p).
- Let $0 \le i < j \le p$ be integers such that

$$\delta(q_0, prefix(w, i)) = \delta(q_0, prefix(w, i))$$

x = prefix(w, i) y = substring(w, i, j)z = suffix(w, j)

We have

- w = xyz: by the definitions of x, y, and z.
- $xy^k z \in A$: see the next slide.

•
$$|y| > 0: i < j.$$

- $|xy| \le p: j \le p.$
- Thus, the claims of the pumping lemma are satisfied.

Proof that $xy^k z \in A$

• Let
$$q_i = \delta(q_0, x)$$
.

• $q_i = \delta(q_0, xy) = \delta(\delta(q_0, x), y) = \delta(q_i, y).$ In short, $\delta(q_i, y) = q_i.$

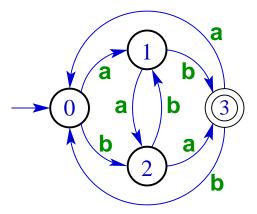
• $\delta(q_0, xy^i) = q_i$, by induction on k:

Base case, k = 0: $\delta(q_0, xy^0) = \delta(q_0, x) = q_i$.

Induction step: k > 0:

$$\delta(q_0, xy^k) = \delta(q_0, xy^{k-1}y) = \delta(\delta(q_0, xy^{k-1}), y) = \delta(q_i, y) = q_i$$
 $\delta(q_0, xy^i z) = \delta(q_i, z) = \delta(\delta(q_0, xy), z) \in A.$

Pumping Lemma: Example



• Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA shown above, with $Q = \{0, 1, 2, 3\}, \Sigma = \{a, b\}, q_0 = 0$, and $F = \{3\}$.

• Let
$$A = L(M)$$
. Let $p = |Q| = 4$.

- Let w = aabaa. Note that $w \in A$.
- We can show that the claims of the pumping lemma are satisfied by choosing x = a, y = ab and z = aa.

•
$$\forall i. xy^i z \in A$$
. • $|y| = 2 > 0$. • $|xy| = 3 < 4 = p$.

Using the Pumping Lemma

- Typically, we use the pumping lemma to show that a language is not regular.
- To do so, we use the contrapositive of the pumping lemma:
 - If it is not possible to choose an integer p such that for any string $w \in A$ there are strings x, y, z such that
 - w = xyz,
 - $\forall i. xy^i z \in A$,
 - |y| > 0, and
 - $|xy| \le p.$

• then A is not a regular language.

- Note that p is chosen first, and then w can be chosen according to the choice of p.
- Typically, we find a w (depending on the choice of p) such that there is no way to break w into x, y, and z such that $\forall i. xy^i z \in A$.
- Often, the counterexample uses i = 2 or i = 0.

$w \cdot w^{\mathcal{R}}$ is not regular

- Let $C = \{s \in \Sigma^* \mid \exists w \in \Sigma. \ s = w \cdot w^{\mathcal{R}}.$
- Let p be a proposed pumping lemma constant for language C.
- Let $w = a^p b b a^p$.

• $w = w^{\mathcal{R}}$, thus $w \in C$.

|w| = 2p + 1 > p. Thus w satisfies the conditions of the pumping lemma.

• Let x, y, and z be any strings with w = xyz, |y| = k > 0 and $|xy| \le p$.

Note that $x \in a^*$ and $y \in a^+$.

- Therefore, $xy^0z = a^{p-k}ba^p \notin C$ becauls $p k \neq p$.
- Thus, it is not possible to choose strings x, y and z that satisfy the conditions of the pumping lemma.
- Therefore, C is not regular.

The Pumping Game

- We can see this as a game between You and an Adversary. You want to show that language A is not regular, and the adversary want to thwart you.
- The Adversary has to make the first move by stating a value for p.
- Based on the value for p, You put forward a string $w \in A$.
- The Adversary now gives strings x, y, and z such that w = xyz, |y| > 0, and $|xy| \le p$.
- If You can find a value for *i* such that xyⁱz∉A, then You win you've shown that the language is not regular.
 Otherwise, the Adversary wins.

One More Example

- Let $A = 1^p$ where p is a prime number.
- Is A regular?

One More Example

- Let $A = 1^p$ where p is a prime number.
- A is not regular.
- Proof (by the pumping lemma, of course):
 - The Adversary proposes n, the pumping lemma constant for A.
 - You choose a prime q with q > n. Thus, $1^q \in A$. Give the Adversary the string 1^q .
 - The Adversary breaks 1^q into strings x, y and z such that $xyz = 1^q$, and |y| > 0.

• You choose
$$i = (1 + q)$$
.
The string $xy^{(1+q)}z$ has length
 $|x| + (1 + q)|y| + |z| = (|x| + |y| + |z|) + q|y|$
 $= q + q|y|$
 $= q(1 + |y|)$
which is not prime (because $|y| > 0$).
• Thus, $xy^{(1+q)}z \notin C$.

Therefore, You win; the Adversary loses; C is not regular. \bigcirc

A Few Remarks

 WARNING: There are non-regular languages that satisfy the pumping lemma. For example,

$$\Sigma = \{a, b, c\}$$
$$A = (aa^*c)^n (bb^*c)^n \cup \Sigma^* cc \Sigma^*$$

The language A is not regular, but it satisfies the conditions of the pumping lemma.

- Satisfying the conditions of the pumping lemma is a necessary but not sufficient condition for showing that a language is regular.
- If A is finite (i.e. |A| is finite), then A trivially satisfies the pumping lemma. Let

$$p = 1 + \max_{w \in A} |w|$$

There are no strings in A with length at least p, and the conditions of the pumping lemma are (vacuously) satisfied.