Regular Expressions and Non-Regular Languages

Mark Greenstreet, CpSc 421, Term 1, 2008/09

Lecture Outline

- Finishing the proof that the set of languages generated by regular expressions is the set of regular language.
 - In the Sept. 17 lecture, we showed that every language generated by a regular expression is a regular language.
 - Given a regular expression, R, we constructed an NFA, N, such that L(N) = L(R). Because L(N) is regular, so is L(R).
 - Today, we will show that every regular language can be generated by a regular expression.
 - Given a regular language, A, we know that there is some DFA, M, that recognizes A. We will construct a regular expression, R, such that L(R) = L(M).
 - A language that is not regular.

From DFAs to REs

$$\rightarrow q_0 \xrightarrow{re_{0,\$}} q_{\$}$$

- Observation: DFA edges are labeled with symbols.
 A symbol or set symbols corresponds to a regular expression.
- Proof Idea: treat DFA edges as regular expressions.
 - If edge (q_i, q_j) is labeled with regular expression $re_{i,j}$, that means that the machine can move from state q_i to q_j by reading any string that matches $re_{i,j}$.
 - In general, such a machine isn't a DFA. Sispser calls this a GNFA, and we'll do the same.
 - If a GNFA has only two states, an initial state q_0 and a final state $q_{\$}$, where $q_{\$}$ is accepting and q_0 is not, then the language recognized by the GNFA is the language generated by the regular expression for edge $(q_0, q_{\$})$.

A GNFA with one intermediate state

We eliminate the state by accounting for all paths through the state. In this case, the only such path is one the one from q_0 to $q_{\$}$.

A GNFA with two intermediate states

$$\begin{array}{|c|c|c|c|c|c|c|} \bullet & re_{0,1}' = re_{0,1} \cup \begin{pmatrix} re_{0,2} \cdot re_{2,2}^* \cdot re_{2,1} \end{pmatrix} \\ re_{1,1}' = re_{1,1} \cup \begin{pmatrix} re_{1,2} \cdot re_{2,2}^* \cdot re_{2,1} \end{pmatrix} \\ re_{1,\$}' = re_{1,\$} \cup \begin{pmatrix} re_{0,\$} \cdot re_{2,2}^* \cdot re_{2,\$} \end{pmatrix} \\ re_{1,\$}' = re_{1,\$} \cup \begin{pmatrix} re_{1,2} \cdot re_{2,2}^* \cdot re_{2,\$} \end{pmatrix} \\ \end{array}$$

Defining GNFAs

Let $\mathcal{R}(\Sigma)$ denote the set of all regular expressions with alphabet Σ .

- Let $(Q, \Sigma, \lambda, q_0, q_{\$})$ be a GNFA where $\lambda : (Q - \{\$\}) \times (Q - \{q_0\}) \rightarrow \mathcal{R}(\Sigma)$ is a labeling of transitions with regular expressions.
 - Note: λ provides a label for every pair of states (that doesn't start with $q_{\$}$ or end with q_0).

If there are no paths from q_i to q_j , then $\lambda(q_i, q_j) = \emptyset$.

Let G be a GNFA, the language recognized by G, L(G) is the set of all strings s, such that

• There exists string $y_1, y_2, \ldots y_m$ such that $s = y_1 \cdot y_2 \cdots y_m$;

There exists states $r_0, r_1, \ldots r_m$ such that:

- $r_0 = q_0;$
- y_i is generated by $\lambda(r_{i-1}, r_i)$.;

$$r_m = q_{\$}.$$

Shrinking a GNFA

Let $G_k = (Q_k, \Sigma, \lambda_k, q_0, q_\$)$ be a GNFA with $Q = \{q_0, q_1, \dots, q_k, q_\$\}$. If k > 0, let $Q_{k-1} = Q - \{q_k\}$. For $q_i, q_j \in Q_{k-1}$, let

 $\lambda_{k-1}(q_i, q_j) = \lambda_k(q_i, q_j) \cup (\lambda_k(q_i, q_k) \cdot \lambda_k(q_k, q_k)^* \cdot \lambda_k(q_k, q_j))$

Let $G_{k-1} = (Q_{k-1}, \Sigma, \lambda_{k-1}, q_0, q_{\$}).$ Claim: $L(G_{k-1}) = L(G_k).$

$L(G_{k-1}) \subseteq L(G_k)$

Proof sketch:

- For any $s \in L(G_{k-1})$, we can find $y_1 \dots y_m$ be strings and $r_0 \dots r_m$ that satisfy the acceptance conditions from slide 6.
- For each "transition" that G_{k-1} makes for these sequences:
 - If G_k can make the same "transition", we have G_k do that.
 - Otherwise, the transition must correspond to a regular expression for going from q_i to q_k and on to q_j . We construct a sequence of transitions for G_k that does the same thing.
- This gives us a sequence of strings $y'_1 \dots y'_{m'}$ and a sequence of states $r'_0 \dots r'_{m'}$ that show that G_k accepts s.
- For more details, see slides 13 through 16.

$L(G_{k-1}) \supseteq L(G_k)$

The proof is similar to the $L(G_{k-1} \subseteq L(G_k)$ case. Sketch:

- For any $s \in L(G_k)$, we can find $y_1 \dots y_m$ be strings and $r_0 \dots r_m$ that satisfy the acceptance conditions from slide 6.
- Now, the special case is when G_k makes a transition to state q_k (which doesn't exists for G_{k-1} .
 - We note that $q_k \neq r_0$, and $q_k \neq q_{\$}$.
 - Thus, we can find a sequence of transitions for G_k that starts in a state other than q_k , ends in a state other than q_k , where all of the states in the middle are q_k .
 - G_{k-1} can read the string for that entire sequence of transitions of G_k in a single move. This follows directly from how we accounted for moves through q_k when construcing the labels for G_{k-1} . for going from q_i to q_k and on to q_j . We construct a sequence of transitions for G_k that does the same thing.
- This gives us a sequence of strings $y'_1 \dots y'_{m'}$ and a sequence of states $r'_0 \dots r'_{m'}$ that show that G_{k-1} accepts s.
- I might add slides with details later.

$\mathbf{RE} = \mathbf{DFA} = \mathbf{NFA}$

Last Friday, we showed that every DFA is an NFA.

- On Monday, we showed that every NFA is a DFA.
- On Wednesday, we showd that every regular expression generates a language recognized by an NFA.
- Today, we showed that every DFA recognizes a language that can be generated by a regular expression.
- .: DFAs, NFAs and regular expressions all describe the same set of languages.

A non-regular langauge: $a^n b^n$

Discuss in class.

A non-regular langauge: $a^n b^n$

Proof by contradiction:

If $a^n b^n$ were are regular language, then there would be some DFA, M, that recognizes it. For the sake of contradiction, assume that such a machine exists.

M has some fixed number of states. Let k be this number.

- Consider the string a^k . M visits k + 1 states from its initial state through reading a^k (including both the initial state and the state reached after reading a^k .
- Therefore, there is at least one state that M visits at least twice (the "Pigeon Hole" principle).
- Thus we can find *i* and *j* with $0 \le i, j \le k$ and $i \ne j$ such that *M* is in the same stae after reading a^i as it is after reading a^j .
- This means that strings $a^i b^i$ and $a^j b^i$ bring M to the same state. Therefore, either M accepts both $a^i b^i$ and $a^j b^i$ or it rejects them both.

However, $a^i b^i$ is in the language and $a^i b^j$ is not.

Therefore, M cannot recognize the language $a^n b^n$.

The coming week

Reading:

September 19 (Today): Nonregular Languages – Read Sipser 1.4. Lecture will cover through Example 1.73 (i.e. pages 77-80).

September 22 (Monday): Pumping Lemma Examples.

The rest of *Sipser* 1.4 (i.e. pages 80–82).

September 24 (Wednesday): Introduction to Context Free Languages – *Sipser* 2.1. Lecture will cover through "Designing Context-Free Grammars" (i.e. pages 99-105).

September 26 (A week from today): Chomsky Normal Form

The rest of Sipser 2.1 (i.e. pages 105–109).

Homework:

- September 19 (Today): Homework 1 due. Homework 2 goes out (on the web, later today, due Sept. 26).
- September 26 (A week from Today): Homework 2 due. Homework 3 goes out (due Oct. 3).

The due date for homework 3 will be strict – no late assignments will be accepted.

Midterm: Oct. 8

$L(G_{k-1}) \subseteq L(G_k)$

Proof details:

- Let $s \in L(G_{k-1})$. Let $y_1 \dots y_m$ be strings and $r_0 \dots r_m$ be states that show that $s \in L(G_{k-1})$ as specified on slide 6.
- Our strategy now is to find a sequence of strings and states that show that $s \in L(G_k)$.
 - The intuitive idea is that a transition from q_i to q_j by G_{k-1} either corresponds to the same transition for G_k , or G_k goes from q_i to q_k , performs zero or more self-loops at q_k and then transitions to q_j .
 - Thus, each transition of G_{k-1} corresponds to either one or three steps of G_k .
 - We'll define f(n) to map step numbers of G_{k-1} to step numbers of G_k .

$L(G_{k-1}) \subseteq L(G_k)$ (cont)

- f(1) = 1.
- For each $1 \le i \le m$
 - Note that $y_i \in L(\lambda_{k-1}(r_{i-1}, r_i))$, and that $\lambda_{k-1}(r_{i-1}, r_i) = \lambda_k(r_{i-1}, r_i) \cup (\lambda_k(r_{i-1}, q_k) \cdot \lambda_k(q_k, q_k)^* \cdot \lambda_k(q_k, r_i))$

• If
$$y_i \in L(\lambda_k(r_{i-1},r_i))$$
, let

$$y'_{f(i)} = y_i$$

$$r'_{f(i)} = r_i$$

$$f(i+1) = f(i) + 1$$

• Otherwise, $y_i \in L(\lambda_k(r_{i-1}, q_k) \cdot \lambda_k(q_k, q_k)^* \cdot \lambda_k(q_k, r_i))$, and (continued on next slide)

$L(G_{k-1}) \subseteq L(G_k)$ (cont)

For each $1 \le i \le m$

If $y_i \in L(\lambda_k(r_{i-1}, q_k) \cdot \lambda_k(q_k, q_k)^* \cdot \lambda_k(q_k, r_i))$, then

There are strings z_0, z_1, \ldots, z_h such that

$$\begin{array}{lll} y_i &=& z_0 \cdot z_1 \cdots z_h; \\ z_0 &\in& L(\lambda_k(r_{i-1}, q_k)); \\ z_d &\in& L(\lambda_k(q_k, q_k)), \quad \text{ for all } 1 \leq d < h; \\ z_h &\in& L(\lambda_k(q_k, r_i)). \end{array}$$

Let

$$\begin{array}{lll} y'_{f(i)+d} &=& z_d, & \text{ for all } 0 \leq d \leq h; \\ r'_{f(i)+d} &=& q_k, & \text{ for all } 0 \leq d < h; \\ r'_{f(i)+h} &=& r_i; \\ f(i+1) &=& f(i+j) \end{array}$$

$L(G_{k-1}) \subseteq L(G_k)$ (cont)

- The sequences of strings $y'_1 \dots y'_{f(m)}$ and states $r'_0 \dots r'_{f(m)}$ satisfy the conditions for GNFA acceptance (slide 6).
- Thus, G_k accepts s.