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Lecture Outline
v Finishing the proof that the set of languages generated by regular

expressions is the set of regular language.
v In the Sept. 17 lecture, we showed that every language generated by a regular

expression is a regular language.
v Given a regular expression, R, we constructed an NFA, N , such that

L(N) = L(R). Because L(N) is regular, so is L(R).
v Today, we will show that every regular language can be generated by a regular

expression.
v Given a regular language, A, we know that there is some DFA, M , that

recognizes A. We will construct a regular expression, R, such that
L(R) = L(M).

v A language that is not regular.
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From DFAs to REs
q
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0q $

v Observation: DFA edges are labeled with symbols.
A symbol or set symbols corresponds to a regular expression.

v Proof Idea: treat DFA edges as regular expressions.
v If edge (qi, qj) is labeled with regular expression rei,j , that means that the

machine can move from state qi to qj by reading any string that matches rei,j .
v In general, such a machine isn’t a DFA.

Sispser calls this a GNFA, and we’ll do the same.

v If a GNFA has only two states, an initial state q0 and a final state q$, where q$ is

accepting and q0 is not, then the language recognized by the GNFA is the

language generated by the regular expression for edge (q0, q$).
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A GNFA with one intermediate state
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We eliminate the state by accounting for all paths through the state.

In this case, the only such path is one the one from q0 to q$.
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A GNFA with two intermediate states
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Defining GNFAs
Let R(Σ) denote the set of all regular expressions with alphabet Σ.

Let (Q, Σ, λ, q0, q$) be a GNFA where
λ : (Q − {$}) × (Q − {q0}) → R(Σ) is a labeling of transitions with
regular expressions.

v Note: λ provides a label for every pair of states (that doesn’t start with q$ or end
with q0).

If there are no paths from qi to qj , then λ(qi, qj) = ∅.

Let G be a GNFA, the language recognized by G, L(G) is the set of all
strings s, such that

v There exists string y1, y2, . . . ym such that s = y1 · y2 · · · ym;
v There exists states r0, r1, . . . rm such that:

v r0 = q0;
v yi is generated by λ(ri−1, ri).;
v rm = q$.

17 September 2008 – p.6/12



Shrinking a GNFA
Let Gk = (Qk, Σ, λk, q0, q$) be a GNFA with Q = {q0, q1, . . . qk, q$}.

If k > 0, let Qk−1 = Q − {qk}.

For qi, qj ∈ Qk−1, let

λk−1(qi, qj) = λk(qi, qj) ∪ (λk(qi, qk) · λk(qk, qk)∗ · λk(qk, qj))

Let Gk−1 = (Qk−1, Σ, λk−1, q0, q$).

Claim: L(Gk−1) = L(Gk).
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L(Gk−1) ⊆ L(Gk)
Proof sketch:

v For any s ∈ L(Gk−1), we can find y1 . . . ym be strings and r0 . . . rm that satisfy the
acceptance conditions from slide 6.

v For each “transition” that Gk−1 makes for these sequences:
v If Gk can make the same “transition”, we have Gk do that.
v Otherwise, the transition must correspond to a regular expression for going

from qi to qk and on to qj . We construct a sequence of transitions for Gk that
does the same thing.

v This gives us a seqence of strings y′

1 . . . y′

m′ and a sequence of states r′0 . . . r′
m′

that show that Gk accepts s.

v For more details, see slides 13 through 16.

17 September 2008 – p.8/12



L(Gk−1) ⊇ L(Gk)
The proof is similar to the L(Gk−1 ⊆ L(Gk) case. Sketch:

v For any s ∈ L(Gk), we can find y1 . . . ym be strings and r0 . . . rm that satisfy the
acceptance conditions from slide 6.

v Now, the special case is when Gk makes a transition to state qk (which doesn’t
exists for Gk−1.

v We note that qk 6= r0, and qk 6= q$.
v Thus, we can find a sequence of transitions for Gk that starts in a state other

than qk, ends in a state other than qk, where all of the states in the middle are
qk.

v Gk−1 can read the string for that entire sequence of transitions of Gk in a
single move. This follows directly from how we accounted for moves through qk

when construcing the labels for Gk−1. for going from qi to qk and on to qj . We
construct a sequence of transitions for Gk that does the same thing.

v This gives us a seqence of strings y′

1 . . . y′

m′ and a sequence of states r′0 . . . r′
m′

that show that Gk−1 accepts s.

v I might add slides with details later.
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RE = DFA = NFA

regular expression.

DFAs NFAs

Every DFA is an NFA

Power Set
Construction

Regular
Expressions

Show a construction
for each case in definition
of regular expression.

Treat edge labels as
regular expressions.

Eliminate states to get

v Last Friday, we showed that every DFA is an NFA.
v On Monday, we showed that every NFA is a DFA.
v On Wednesday, we showd that every regular expression generates a language

recognized by an NFA.

v Today, we showed that every DFA recognizes a language that can be generated

by a regular expression.

∴ DFAs, NFAs and regular expressions all describe the same set of
languages.

�
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A non-regular langauge:anbn

Discuss in class.
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A non-regular langauge:anbn

Proof by contradiction:
If anbn were are regular language, then there would be some DFA, M , that recognizes

it. For the sake of contradiction, assume that such a machine exists.

M has some fixed number of states. Let k be this number.

Consider the string ak . M visits k + 1 states from its initial state through reading ak

(including both the initial state and the state reached after reading ak.

Therefore, there is at least one state that M visits at least twice (the “Pigeon Hole”
principle).

Thus we can find i and j with 0 ≤ i, j ≤ k and i 6= j such that M is in the same stae
after reading ai as it is after reading aj .

This means that strings aibi and ajbi bring M to the same state. Therefore, either M

accepts both aibi and ajbi or it rejects them both.

However, aibi is in the language and aibj is not.

Therefore, M cannot recognize the language anbn.
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The coming week
Reading:

September 19 (Today): Nonregular Languages – Read Sipser 1.4.
Lecture will cover through Example 1.73 (i.e. pages 77-80).

September 22 (Monday): Pumping Lemma Examples.
The rest of Sipser 1.4 (i.e. pages 80–82).

September 24 (Wednesday): Introduction to Context Free Languages – Sipser 2.1.
Lecture will cover through “Designing Context-Free Grammars” (i.e. pages
99-105).

September 26 (A week from today): Chomsky Normal Form
The rest of Sipser 2.1 (i.e. pages 105–109).

Homework:
September 19 (Today): Homework 1 due. Homework 2 goes out (on the web, later

today, due Sept. 26).

September 26 (A week from Today): Homework 2 due. Homework 3 goes out (due
Oct. 3).
The due date for homework 3 will be strict – no late assignments will be
accepted.
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L(Gk−1) ⊆ L(Gk)
Proof details:

v Let s ∈ L(Gk−1). Let y1 . . . ym be strings and r0 . . . rm be states that show that
s ∈ L(Gk−1) as specified on slide 6.

v Our strategy now is to find a sequence of strings and states that show that
s ∈ L(Gk).

v The intuitive idea is that a transition from qi to qj by Gk−1 either corresponds to
the same transition for Gk, or Gk goes from qi to qk , performs zero or more
self-loops at qk and then transitions to qj .

v Thus, each transition of Gk−1 corresponds to either one or three steps of Gk.
v We’ll define f(n) to map step numbers of Gk−1 to step numbers of Gk.
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L(Gk−1) ⊆ L(Gk) (cont)
v f(1) = 1.

v For each 1 ≤ i ≤ m

v Note that yi ∈ L(λk−1(ri−1, ri)), and that
λk−1(ri−1, ri) = λk(ri−1, ri) ∪ (λk(ri−1, qk) · λk(qk, qk)∗ · λk(qk, ri))

v If yi ∈ L(λk(ri−1, ri)), let

y′

f(i)
= yi

r′
f(i)

= ri

f(i + 1) = f(i) + 1

v Otherwise, yi ∈ L(λk(ri−1, qk) · λk(qk, qk)∗ · λk(qk, ri)), and
(continued on next slide)
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L(Gk−1) ⊆ L(Gk) (cont)
v For each 1 ≤ i ≤ m

v If yi ∈ L(λk(ri−1, qk) · λk(qk, qk)∗ · λk(qk, ri)), then
v There are strings z0, z1, . . . , zh such that

yi = z0 · z1 · · · zh;

z0 ∈ L(λk(ri−1, qk));

zd ∈ L(λk(qk, qk)), for all 1 ≤ d < h;

zh ∈ L(λk(qk, ri)).

v Let

y′

f(i)+d
= zd, for all 0 ≤ d ≤ h;

r′
f(i)+d

= qk, for all 0 ≤ d < h;

r′
f(i)+h

= ri;

f(i + 1) = f(i + j)
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L(Gk−1) ⊆ L(Gk) (cont)
v The sequences of strings y′

1 . . . y′

f(m)
and states r′0 . . . r′

f(m)
satisfy the conditions

for GNFA acceptance (slide 6).

v Thus, Gk accepts s.
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