Regular Expressions and
Non-Regqgular Languages

Mark Greenstreet, CpSc 421, Term 1, 2008/09

17 September 2008 — p.1/12

Lecture Outline

® Finishing the proof that the set of languages generated by regular
expressions is the set of regular language.

@ Inthe Sept. 17 lecture, we showed that every language generated by a regular
expression is a regular language.
@ Given a regular expression, R, we constructed an NFA, N, such that
L(N) = L(R). Because L(N) isregular,sois L(R).

@ Today, we will show that every regular language can be generated by a regular
expression.
@ Given aregular language, A, we know that there is some DFA, M, that
recognizes A. We will construct a regular expression, R, such that
L(R)=L(M).

® A language that is not regular.

17 September 2008 — p.2/12

From DFAs to REs

® Observation: DFA edges are labeled with symbols.
A symbol or set symbols corresponds to a regular expression.

® Proof Idea: treat DFA edges as regular expressions.

® Ifedge (¢, q;) is labeled with regular expression re; ;, that means that the
machine can move from state g; to g; by reading any string that matches re; ;.

@ In general, such a machine isn’t a DFA.
Sispser calls this a GNFA, and we’ll do the same.

@ If a GNFA has only two states, an initial state ¢o and a final state qg, Where gg is
accepting and qg is not, then the language recognized by the GNFA is the
language generated by the regular expression for edge (qo, qg)-

17 September 2008 — p.3/12

A GNFA with one Intermediate state

e,

I€os

reO,l(rel,l)* rei s

©.__®

r€os

reos Jre,, (re,,) re
@ 0 0,1(1,1) 1,$:

We eliminate the state by accounting for all paths through the state.

In this case, the only such path is one the one from ¢, to ¢s.

17 September 2008 — p.4/12

A GNFA with two intermediate states

reZ,z

re'ss

O&uOhs

re'os

/

req g = 0,8 U Ere(),g . 7“6372 - T€2’$g

/

/ — * —
re; 1 = Teil Ulrei2- T€o o T€2,1 re1 g = T€1,$ U

;o
reg.1 = Te0,1 U | Teo,2 - 7“6372 - Te2. 1
T€1,2 - T€5 5 * T€2 ¢

17 September 2008 — p.5/12

Defining GNFAS

Let R(X) denote the set of all regular expressions with alphabet ..

Let (Q, >,)\, qo, q5) be a GNFA where
A (Q—1{%}) x (Q —{qo}) — R(X) is a labeling of transitions with
regular expressions.

@ Note:) provides a label for every pair of states (that doesn’t start with ¢ or end
with qo).

If there are no paths from g; to g;, then \(q¢;, q;) = 0.

Let G be a GNFA, the language recognized by G, L(G) is the set of all
strings s, such that

@ There exists string y1, y2, ...ym Suchthat s = y1 - y2 - - - Y !

@® There exists states rq, 71, ... m such that;

® 70 = 40,
@® 1, is generated by A(r;_1,75).;
. 'm = (4g.

17 September 2008 — p.6/12

Shrinking a GNFA

Let Gk — (Qka 27)\lm q0, Q$) be a GNFA with Q — {QO7 qi, - - -4k, Q$}
Ifk>0,letQr_1=0Q — {Qk}
For q;,q; € Qr—1, let

Me—1(gi,q5) = Me(inq5) U (M (i an) - M, ar)™ - Ak(qr, g5))

Let Gk—l — (Qk—l) 27)\k—la qo, Q$)
Claim: L(Gk_l) = L(Gk)

17 September 2008 — p.7/12

L(Gg_1) C L(Gy)

Proof sketch:

® Foranysc L(Gj_1), we can find y; ...y, be strings and rq . .. 7y, that satisfy the
acceptance conditions from slide 6.

@ For each “transition” that G _; makes for these sequences:

@ If G, can make the same “transition”, we have G, do that.

@ Otherwise, the transition must correspond to a regular expression for going
from g; to g, and on to ¢,;. We construct a sequence of transitions for G, that
does the same thing.

@ This gives us a seqgence of strings v/ .. .y! , and a sequence of states r(, ... 7/ ,
that show that GG, accepts s.

@ For more details, see slides 13 through [16.

17 September 2008 — p.8/12

L(Gg_1) 2 L(Gy)

The proof is similar to the L(G;_1 C L(G};.) case. Sketch:

® Foranysc L(Gy), we canfind y; ...ym be strings and rg . . . 7., that satisfy the
acceptance conditions from slide 6.

@ Now, the special case is when G, makes a transition to state g;, (which doesn’t
exists for G _1.

® We note that ¢;, # 70, and g, # qg.

@ Thus, we can find a sequence of transitions for Gy, that starts in a state other
than g, ends in a state other than q;, where all of the states in the middle are
gk -

@® G,._; can read the string for that entire sequence of transitions of G, in a
single move. This follows directly from how we accounted for moves through g;.
when construcing the labels for G, _;. for going from ¢; to g, and on to ¢;. We
construct a sequence of transitions for G5, that does the same thing.

@ This gives us a seqgence of strings v/ .. .y, and a sequence of states r(,...r’ ,
that show that (G, accepts s.

@ | might add slides with details later.

17 September 2008 — p.9/12

RE = DFA = NFA

Every DFA isan NFA

Treat edge labels as
regular expressions.
Eliminate states to get
regular expression.

Show a construction
for each case in definition
of regular expression.

Construction

Regular
Expressions

@ Last Friday, we showed that every DFA is an NFA.
@ On Monday, we showed that every NFA is a DFA.

@® On Wednesday, we showd that every regular expression generates a language
recognized by an NFA.

@ Today, we showed that every DFA recognizes a language that can be generated
by a regular expression.

.. DFAs, NFAs and regular expressions all describe the same set of
languages.

]

17 September 2008 — p.10/12

A non-regular langauge:a"b”

Discuss In class.

17 September 2008 — p.11/12

A non-regular langauge:a"b”

Proof by contradiction:

If a™b™ were are regular language, then there would be some DFA, M, that recognizes
it. For the sake of contradiction, assume that such a machine exists.

M has some fixed number of states. Let k be this number.

Consider the string a*. M visits k + 1 states from its initial state through reading a*
(including both the initial state and the state reached after reading a*.

Therefore, there is at least one state that M visits at least twice (the “Pigeon Hole”
principle).

Thus we can find 7 and 57 with 0 < ¢, 5 < k and ¢ # j such that M is in the same stae
after reading a® as it is after reading a’.

This means that strings a*b? and a’b* bring M to the same state. Therefore, either M
accepts both a*b* and a’b* or it rejects them both.

However, a’b® is in the language and a*b’J is not.

Therefore, M cannot recognize the language a™b™.

17 September 2008 — p.11/12

The coming week

Reading:

September 19 (Today): Nonregular Languages — Read Sipser 1.4.
Lecture will cover through Example 1.73 (i.e. pages 77-80).

September 22 (Monday): Pumping Lemma Examples.
The rest of Sipser 1.4 (i.e. pages 80-82).

September 24 (Wednesday): Introduction to Context Free Languages — Sipser 2.1.
Lecture will cover through “Designing Context-Free Grammars” (i.e. pages
99-105).

September 26 (A week from today): Chomsky Normal Form
The rest of Sipser 2.1 (i.e. pages 105-109).

Homework:

September 19 (Today): Homework 1 due. Homework 2 goes out (on the web, later
today, due Sept. 26).

September 26 (A week from Today): Homework 2 due. Homework 3 goes out (due
Oct. 3).
The due date for homework 3 will be strict — no late assignments will be
accepted.

Midterm: Oct. 8 17 September 2008 — p.12/12

L(Gg_1) C L(Gy)

Proof detalls:

@® letsc L(Gy_1). Lety; ...ym be strings and rg ... rp, be states that show that
s € L(G_1) as specified on slide 6.

@ Our strategy now is to find a sequence of strings and states that show that
S € L(Gk)

@® The intuitive idea is that a transition from ¢; to ¢; by G}, _1 either corresponds to
the same transition for G, or GG, goes from g; to q;, performs zero or more
self-loops at g5, and then transitions to g; .

@ Thus, each transition of Gj,_1 corresponds to either one or three steps of G.

@ Wwe'll define f(n) to map step numbers of Gj,_; to step numbers of G,.

17 September 2008 — p.13/12

LSGk_lz C L(Gk) (cont)

® 7f(1)=1.

® Foreach1<i<m

@® Note that y; € L(Ag_1(r;—1,73)), and that
Ae—1(ric1,mi) = Ap(ri—1, 7)) U (A (riz1,qk) - Me(Q, k)™ - Ae(qr,74))
® Ify; € LOk(ri—1,73)), let

/ — .
yf(z-) = Y
/ — .
Tray T T

fG+1) = f(@)+1

@® Otherwise, y; € LAk (ri—1,qk) - M (qk, ax)* - M (g, 73)), and
(continued on next slide)

17 September 2008 — p.14/12

LSGk_lz C L(Gk) (cont)

® Foreach1<i<m

® ify; € LOk(ri—1,qr) - Mk, a6)* - Mgk, i), then

@ There are strings zg, 21, ..

® Let

Ys

<0

Zd

Mm M M

Zh

/
Yri)+d

/
TF(i)+d

/
"F(@)+h

fi+1)

., zp, such that

20 - 21" 2h;

L(Ag(ri—1,9%));
L(Ak(qr,qr)), foralll <d < h;

LAk (qr,7i))-

= z4, forall0 < d < h;
qk forall0 < d < h;
T3

= fli+3)

17 September 2008 — p.15/12

LSGk_lz C L(Gk) (cont)

@ The sequences of strings v} .. .y}(m) and states r(; r}(m) satisfy the conditions
for GNFA acceptance (slide 6).

@® Thus, G}, accepts s.

17 September 2008 — p.16/12

	Lecture Outline
	From DFAs to REs
	A GNFA with one intermediate state
	A GNFA with two intermediate states
	Defining GNFAs
	Shrinking a GNFA
	$L(G_{k-1})
subseteq L(G_k)$
	$L(G_{k-1})
supseteq L(G_k)$
	RE $=$ DFA $=$ NFA
	A non-regular langauge: $cgreen mrgtt {a}^n mrgtt {b}^n$
	The coming week
	$L(G_{k-1})
subseteq L(G_k)$
	$L(G_{k-1})
subseteq L(G_k)$ (cont)
	$L(G_{k-1})
subseteq L(G_k)$ (cont)
	$L(G_{k-1})
subseteq L(G_k)$ (cont)

