Regular Expressions and Non-Regular Languages

Mark Greenstreet, CpSc 421, Term 1, 2008/09

Lecture Outline

- Finishing the proof that the set of languages generated by regular expressions is the set of regular language.
- In the Sept. 17 lecture, we showed that every language generated by a regular expression is a regular language.
- Given a regular expression, R, we constructed an NFA, N, such that $L(N)=L(R)$. Because $L(N)$ is regular, so is $L(R)$.
- Today, we will show that every regular language can be generated by a regular expression.
- Given a regular language, A, we know that there is some DFA, M, that recognizes A. We will construct a regular expression, R, such that $L(R)=L(M)$.
- A language that is not regular.

From DFAs to REs

- Observation: DFA edges are labeled with symbols.

A symbol or set symbols corresponds to a regular expression.

- Proof Idea: treat DFA edges as regular expressions.
- If edge $\left(q_{i}, q_{j}\right)$ is labeled with regular expression $r e_{i, j}$, that means that the machine can move from state q_{i} to q_{j} by reading any string that matches $r e_{i, j}$.
- In general, such a machine isn't a DFA.

Sispser calls this a GNFA, and we'll do the same.

- If a GNFA has only two states, an initial state q_{0} and a final state q_{\S}, where q_{Φ} is accepting and q_{0} is not, then the language recognized by the GNFA is the language generated by the regular expression for edge $\left(q_{0}, q_{\$}\right)$.

A GNFA with one intermediate state

We eliminate the state by accounting for all paths through the state. In this case, the only such path is one the one from q_{0} to q_{\S}.

A GNFA with two intermediate states

$r e_{0,1}^{\prime}=r e_{0,1} \cup\left(r e_{0,2} \cdot r e_{2,2}^{*} \cdot r e_{2,1}\right.$
$r e_{1,1}^{\prime}=r e_{1,1} \cup\left(r e_{1,2} \cdot r e_{2,2}^{*} \cdot r e_{2,1}\right)$$\left\{\begin{array}{l}r e_{0, \$}^{\prime}=r e_{0, \$} \cup\left(r e_{0,2} \cdot r e_{2,2}^{*} \cdot r e_{2, \$}\right. \\ r e_{1, \$}^{\prime}=r e_{1, \$} \cup\left(r e_{1,2} \cdot r e_{2,2}^{*} \cdot r e_{2, \$}\right.\end{array}\right\}$

Defining GNFAs

Let $\mathcal{R}(\Sigma)$ denote the set of all regular expressions with alphabet Σ.
Let $\left(Q, \Sigma, \lambda, q_{0}, q_{\Phi}\right)$ be a GNFA where
$\lambda:(Q-\{\$\}) \times\left(Q-\left\{q_{0}\right\}\right) \rightarrow \mathcal{R}(\Sigma)$ is a labeling of transitions with regular expressions.

- Note: λ provides a label for every pair of states (that doesn't start with q_{Φ} or end with q_{0}).
If there are no paths from q_{i} to q_{j}, then $\lambda\left(q_{i}, q_{j}\right)=\emptyset$.
Let G be a GNFA, the language recognized by $G, L(G)$ is the set of all strings s, such that
- There exists string $y_{1}, y_{2}, \ldots y_{m}$ such that $s=y_{1} \cdot y_{2} \cdots y_{m}$;
- There exists states $r_{0}, r_{1}, \ldots r_{m}$ such that:
- $r_{0}=q_{0}$;
- y_{i} is generated by $\lambda\left(r_{i-1}, r_{i}\right)$;
- $r_{m}=q_{\S}$.

Shrinking a GNFA

Let $G_{k}=\left(Q_{k}, \Sigma, \lambda_{k}, q_{0}, q_{\Phi}\right)$ be a GNFA with $Q=\left\{q_{0}, q_{1}, \ldots q_{k}, q_{\S}\right\}$. If $k>0$, let $Q_{k-1}=Q-\left\{q_{k}\right\}$.
For $q_{i}, q_{j} \in Q_{k-1}$, let

$$
\lambda_{k-1}\left(q_{i}, q_{j}\right)=\lambda_{k}\left(q_{i}, q_{j}\right) \cup\left(\lambda_{k}\left(q_{i}, q_{k}\right) \cdot \lambda_{k}\left(q_{k}, q_{k}\right)^{*} \cdot \lambda_{k}\left(q_{k}, q_{j}\right)\right)
$$

Let $G_{k-1}=\left(Q_{k-1}, \Sigma, \lambda_{k-1}, q_{0}, q_{\S}\right)$.
Claim: $L\left(G_{k-1}\right)=L\left(G_{k}\right)$.

$L\left(G_{k-1}\right) \subseteq L\left(G_{k}\right)$

Proof sketch:

- For any $s \in L\left(G_{k-1}\right)$, we can find $y_{1} \ldots y_{m}$ be strings and $r_{0} \ldots r_{m}$ that satisfy the acceptance conditions from slide 6.
- For each "transition" that G_{k-1} makes for these sequences:
- If G_{k} can make the same "transition", we have G_{k} do that.
- Otherwise, the transition must correspond to a regular expression for going from q_{i} to q_{k} and on to q_{j}. We construct a sequence of transitions for G_{k} that does the same thing.
- This gives us a seqence of strings $y_{1}^{\prime} \ldots y_{m^{\prime}}^{\prime}$ and a sequence of states $r_{0}^{\prime} \ldots r_{m^{\prime}}^{\prime}$ that show that G_{k} accepts s.
- For more details, see slides 13 through 16.

$L\left(G_{k-1}\right) \supseteq L\left(G_{k}\right)$

The proof is similar to the $L\left(G_{k-1} \subseteq L\left(G_{k}\right)\right.$ case. Sketch:

- For any $s \in L\left(G_{k}\right)$, we can find $y_{1} \ldots y_{m}$ be strings and $r_{0} \ldots r_{m}$ that satisfy the acceptance conditions from slide 6.
- Now, the special case is when G_{k} makes a transition to state q_{k} (which doesn't exists for G_{k-1}.
- We note that $q_{k} \neq r_{0}$, and $q_{k} \neq q_{\Phi}$.
- Thus, we can find a sequence of transitions for G_{k} that starts in a state other than q_{k}, ends in a state other than q_{k}, where all of the states in the middle are q_{k}.
- G_{k-1} can read the string for that entire sequence of transitions of G_{k} in a single move. This follows directly from how we accounted for moves through q_{k} when construcing the labels for G_{k-1}. for going from q_{i} to q_{k} and on to q_{j}. We construct a sequence of transitions for G_{k} that does the same thing.
- This gives us a seqence of strings $y_{1}^{\prime} \ldots y_{m^{\prime}}^{\prime}$ and a sequence of states $r_{0}^{\prime} \ldots r_{m^{\prime}}^{\prime}$ that show that G_{k-1} accepts s.
- I might add slides with details later.

$\mathbf{R E}=\mathbf{D F A}=\mathbf{N F A}$

Last Friday, we showed that every DFA is an NFA.
On Monday, we showed that every NFA is a DFA.

- On Wednesday, we showd that every regular expression generates a language recognized by an NFA.

Today, we showed that every DFA recognizes a language that can be generated by a regular expression.
\therefore DFAs, NFAs and regular expressions all describe the same set of languages.

A non-regular langauge: $\mathbf{a}^{n} \mathbf{b}^{n}$

Discuss in class.

A non-regular langauge: $\mathbf{a}^{n} \mathbf{b}^{n}$

Proof by contradiction:

If $a^{n} b^{n}$ were are regular language, then there would be some DFA, M, that recognizes it. For the sake of contradiction, assume that such a machine exists.
M has some fixed number of states. Let k be this number.
Consider the string a^{k}. M visits $k+1$ states from its initial state through reading a^{k} (including both the initial state and the state reached after reading a^{k}.

Therefore, there is at least one state that M visits at least twice (the "Pigeon Hole" principle).

Thus we can find i and j with $0 \leq i, j \leq k$ and $i \neq j$ such that M is in the same stae after reading a^{i} as it is after reading a^{j}.

This means that strings $a^{i} b^{i}$ and $a^{j} b^{i}$ bring M to the same state. Therefore, either M accepts both $a^{i} b^{i}$ and $a^{j} b^{i}$ or it rejects them both.

However, $\mathrm{a}^{i} \mathrm{~b}^{i}$ is in the language and $\mathrm{a}^{i} \mathrm{~b}^{j}$ is not.
Therefore, M cannot recognize the language $a^{n} b^{n}$.

The coming week

Reading:

September 19 (Today): Nonregular Languages - Read Sipser 1.4.
Lecture will cover through Example 1.73 (i.e. pages 77-80).
September 22 (Monday): Pumping Lemma Examples.
The rest of Sipser 1.4 (i.e. pages 80-82).
September 24 (Wednesday): Introduction to Context Free Languages - Sipser 2.1. Lecture will cover through "Designing Context-Free Grammars" (i.e. pages 99-105).

September 26 (A week from today): Chomsky Normal Form
The rest of Sipser 2.1 (i.e. pages 105-109).
Homework:
September 19 (Today): Homework 1 due. Homework 2 goes out (on the web, later today, due Sept. 26).
September 26 (A week from Today): Homework 2 due. Homework 3 goes out (due Oct. 3).
The due date for homework 3 will be strict - no late assignments will be accepted.

$L\left(G_{k-1}\right) \subseteq L\left(G_{k}\right)$

Proof details:

- Let $s \in L\left(G_{k-1}\right)$. Let $y_{1} \ldots y_{m}$ be strings and $r_{0} \ldots r_{m}$ be states that show that $s \in L\left(G_{k-1}\right)$ as specified on slide 6 .
- Our strategy now is to find a sequence of strings and states that show that $s \in L\left(G_{k}\right)$.
The intuitive idea is that a transition from q_{i} to q_{j} by G_{k-1} either corresponds to the same transition for G_{k}, or G_{k} goes from q_{i} to q_{k}, performs zero or more self-loops at q_{k} and then transitions to q_{j}.
- Thus, each transition of G_{k-1} corresponds to either one or three steps of G_{k}.
- We'll define $f(n)$ to map step numbers of G_{k-1} to step numbers of G_{k}.

$L\left(G_{k-1}\right) \subseteq L\left(G_{k}\right)($ cont $)$

- $f(1)=1$.
- For each $1 \leq i \leq m$

Note that $y_{i} \in L\left(\lambda_{k-1}\left(r_{i-1}, r_{i}\right)\right)$, and that

$$
\lambda_{k-1}\left(r_{i-1}, r_{i}\right)=\lambda_{k}\left(r_{i-1}, r_{i}\right) \cup\left(\lambda_{k}\left(r_{i-1}, q_{k}\right) \cdot \lambda_{k}\left(q_{k}, q_{k}\right)^{*} \cdot \lambda_{k}\left(q_{k}, r_{i}\right)\right)
$$

- If $y_{i} \in L\left(\lambda_{k}\left(r_{i-1}, r_{i}\right)\right)$, let

$$
\begin{aligned}
y_{f(i)}^{\prime} & =y_{i} \\
r_{f(i)}^{\prime} & =r_{i} \\
f(i+1) & =f(i)+1
\end{aligned}
$$

Otherwise, $y_{i} \in L\left(\lambda_{k}\left(r_{i-1}, q_{k}\right) \cdot \lambda_{k}\left(q_{k}, q_{k}\right)^{*} \cdot \lambda_{k}\left(q_{k}, r_{i}\right)\right)$, and (continued on next slide)

$L\left(G_{k-1}\right) \subseteq L\left(G_{k}\right)($ cont $)$

- For each $1 \leq i \leq m$
- If $y_{i} \in L\left(\lambda_{k}\left(r_{i-1}, q_{k}\right) \cdot \lambda_{k}\left(q_{k}, q_{k}\right)^{*} \cdot \lambda_{k}\left(q_{k}, r_{i}\right)\right)$, then
- There are strings $z_{0}, z_{1}, \ldots, z_{h}$ such that

$$
\begin{aligned}
& y_{i}=z_{0} \cdot z_{1} \cdots z_{h} \\
& z_{0} \in L\left(\lambda_{k}\left(r_{i-1}, q_{k}\right)\right) \\
& z_{d} \in L\left(\lambda_{k}\left(q_{k}, q_{k}\right)\right), \quad \text { for all } 1 \leq d<h \\
& z_{h} \in L\left(\lambda_{k}\left(q_{k}, r_{i}\right)\right)
\end{aligned}
$$

- Let

$$
\begin{array}{rlrl}
y_{f(i)+d}^{\prime} & =z_{d}, & & \text { for all } 0 \leq d \leq h ; \\
r_{f(i)+d}^{\prime} & =q_{k}, & \text { for all } 0 \leq d<h ; \\
r_{f(i)+h}^{\prime} & =r_{i} ; &
\end{array}
$$

$L\left(G_{k-1}\right) \subseteq L\left(G_{k}\right)($ cont $)$

- The sequences of strings $y_{1}^{\prime} \ldots y_{f(m)}^{\prime}$ and states $r_{0}^{\prime} \ldots r_{f(m)}^{\prime}$ satisfy the conditions for GNFA acceptance (slide 6).
- Thus, G_{k} accepts s.

