
Regular Expressions
=

Regular Languages
Mark Greenstreet, CpSc 421, Term 1, 2008/09

17 September 2008 – p.1/18

Lecture Outline
Regular Expressions

v Regular Expresssions

v Equivalence of Regular Expressions and Finite Automata

17 September 2008 – p.2/18

Regular Madlibs

.
noun noun

Once upon a , there was a that
past tense verb

zero or more adjectives plural noun

v Let avocado denote the language {avocado}.

v Let noun =

avocado ∪ beach ∪ carrot ∪ caterpillar ∪ pencil ∪ penguins ∪ zombie.

v Let pluralNoun = noun s.

v Let verb = add ∪ compile ∪ eat ∪ sing ∪ swim ∪ walk.

v Let pastVerb = verb ed.

v Let adjective =

beautiful ∪ big ∪ cold ∪ considerable ∪ furry ∪ insipid ∪ yellow.

v Now, our MadlibTM is

Once upon a noun , there was a noun , that pastVerb

(adjective)∗ pluralNoun.

17 September 2008 – p.3/18

Regular Madlibs

.
noun noun

Once upon a , there was a that
past tense verb

zero or more adjectives plural noun

v Let avocado denote the language {avocado}.

v Let noun =

avocado ∪ beach ∪ carrot ∪ caterpillar ∪ pencil ∪ penguins ∪ zombie.

v Let pluralNoun = noun s.

v Let verb = add ∪ compile ∪ eat ∪ sing ∪ swim ∪ walk.

v Let pastVerb = verb ed.

v Let adjective =

beautiful ∪ big ∪ cold ∪ considerable ∪ furry ∪ insipid ∪ yellow.

v Now, our MadlibTM is

Once upon a pencil , there was a noun , that pastVerb

(adjective)∗ pluralNoun.

17 September 2008 – p.3/18

Regular Madlibs

.
noun noun

Once upon a , there was a that
past tense verb

zero or more adjectives plural noun

v Let avocado denote the language {avocado}.

v Let noun =

avocado ∪ beach ∪ carrot ∪ caterpillar ∪ pencil ∪ penguins ∪ zombie.

v Let pluralNoun = noun s.

v Let verb = add ∪ compile ∪ eat ∪ sing ∪ swim ∪ walk.

v Let pastVerb = verb ed.

v Let adjective =

beautiful ∪ big ∪ cold ∪ considerable ∪ furry ∪ insipid ∪ yellow.

v Now, our MadlibTM is

Once upon a pencil , there was a carrot , that

pastVerb (adjective)∗ pluralNoun.

17 September 2008 – p.3/18

Regular Madlibs

.
noun noun

Once upon a , there was a that
past tense verb

zero or more adjectives plural noun

v Let avocado denote the language {avocado}.

v Let noun =

avocado ∪ beach ∪ carrot ∪ caterpillar ∪ pencil ∪ penguins ∪ zombie.

v Let pluralNoun = noun s.

v Let verb = add ∪ compile ∪ eat ∪ sing ∪ swim ∪ walk.

v Let pastVerb = verb ed.

v Let adjective =

beautiful ∪ big ∪ cold ∪ considerable ∪ furry ∪ insipid ∪ yellow.

v Now, our MadlibTM is

Once upon a pencil , there was a carrot , that

walked (adjective)∗ pluralNoun.

17 September 2008 – p.3/18

Regular Madlibs

.
noun noun

Once upon a , there was a that
past tense verb

zero or more adjectives plural noun

v Let avocado denote the language {avocado}.

v Let noun =

avocado ∪ beach ∪ carrot ∪ caterpillar ∪ pencil ∪ penguins ∪ zombie.

v Let pluralNoun = noun s.

v Let verb = add ∪ compile ∪ eat ∪ sing ∪ swim ∪ walk.

v Let pastVerb = verb ed.

v Let adjective =

beautiful ∪ big ∪ cold ∪ considerable ∪ furry ∪ insipid ∪ yellow.

v Now, our MadlibTM is

Once upon a pencil , there was a carrot , that

walked beautiful, (adjective)∗ pluralNoun.

17 September 2008 – p.3/18

Regular Madlibs

.
noun noun

Once upon a , there was a that
past tense verb

zero or more adjectives plural noun

v Let avocado denote the language {avocado}.

v Let noun =

avocado ∪ beach ∪ carrot ∪ caterpillar ∪ pencil ∪ penguins ∪ zombie.

v Let pluralNoun = noun s.

v Let verb = add ∪ compile ∪ eat ∪ sing ∪ swim ∪ walk.

v Let pastVerb = verb ed.

v Let adjective =

beautiful ∪ big ∪ cold ∪ considerable ∪ furry ∪ insipid ∪ yellow.

v Now, our MadlibTM is

Once upon a pencil , there was a carrot , that

walked beautiful, considerable pluralNoun.

17 September 2008 – p.3/18

Regular Madlibs

.
noun noun

Once upon a , there was a that
past tense verb

zero or more adjectives plural noun

v Let avocado denote the language {avocado}.

v Let noun =

avocado ∪ beach ∪ carrot ∪ caterpillar ∪ pencil ∪ penguins ∪ zombie.

v Let pluralNoun = noun s.

v Let verb = add ∪ compile ∪ eat ∪ sing ∪ swim ∪ walk.

v Let pastVerb = verb ed.

v Let adjective =

beautiful ∪ big ∪ cold ∪ considerable ∪ furry ∪ insipid ∪ yellow.

v Now, our MadlibTM is

Once upon a pencil , there was a carrot , that

walked beautiful, considerable penguins.

17 September 2008 – p.3/18

Regular Expressions
v A regular expression, α, is

R L(R) where

∅ ∅

ǫ {ǫ}

c {c} c ∈ Σ

R1 ∪ R2 L(R1) ∪ L(R2) R1 and R2 are regular expressions

R1 · R2 L(R1) · L(R2) R1 and R2 are regular expressions

R∗

1
L(R1)

∗ R1 is a regular expression

v Language union, concatenation, and asteration were defined in the
Sept. 10 notes and Sipser p. 44.

17 September 2008 – p.4/18

Regular Expressions Examples
Let Σ = {a,b}.

v a∗b∗ – the set of all string with zero or more a’s followed by zero or
more b’s. For example, the strings ǫ, a, aaab, bb, and aabbb are in
this language. The strings aba and ba are not.

v (aaa)∗(bb)∗b – the set of all strings consisting of a number of a’s
that is divisible by three followed by an odd number of b’s. For
example, the strings b, aaabbb, and aaaaaaaaaaaabbbbb are in
this language, but the strings ǫ, baaa, and aabbb are not.

v aΣ∗b – the set of all strings that begin with an a and end with a b.
For example, the strings ab, ababab and abbbaabaaabab are in
this language, but the strings a, aba, and babbab are not.

17 September 2008 – p.5/18

A Few More Remarks
v We’ll write Σ as a regular language that generates the language of

all strings in Σ1.

v From the definition of L∗, we note that ǫ ∈ L∗ for any language L.
In particular, note that ∅∗ = {ǫ}.

v Regular expressions and programming languages.
The following regular expressions describe various lexical pieces of
Java:

v The keyword class: class.
v Identifiers: ([A− Z] ∪ [a− z] ∪ ∪ $)([A− Z] ∪ [a− z] ∪ ∪ $ ∪ [0− 9])∗,

where [A− Z] denotes all characters from A to Z, and likewise for [a− z] and
[0− 9].

v Floating point numbers:

(([0− 9]+ . [0− 9]∗) ∪ ([0− 9]∗ . [0− 9]+))(ǫ ∪ (e(+ ∪ − ∪ ǫ)[0− 9]+))
S

[0− 9]+e(+ ∪ − ∪ ǫ)[0− 9]+,

where [0− 9]+ = [0− 9][0− 9]∗.
17 September 2008 – p.6/18

RE = DFA = NFA

regular expression.

DFAs NFAs

Every DFA is an NFA

Power Set
Construction

Regular
Expressions

Show a construction
for each case in definition
of regular expression.

Treat edge labels as
regular expressions.

Eliminate states to get

v We will show that every language described by a regular
expression is recognized by an NFA.

v We will then show that every language recognized by a DFA has a
corresponding regular expression.

17 September 2008 – p.7/18

From REs to NFAs – strategy
v Regular expressions are defined inductively (see slide 4)

v Our proof is by induction on the structure of the regular expression.

v One case for each way to form a regular expression:
v The empty language: ∅
v The empty string: ǫ

v A single symbol: c

v Union of two REs: R1 ∪ R2

v Concatenation of two REs: R1 · R2

v Kleene star: R∗

17 September 2008 – p.8/18

From REs to NFAs
v R = ∅:

v R = ǫ:

v R = c: c

v R = R1 ∪ R2:

ε

...

...

recognizes 1RN1

recognizes 2RN2

ε

17 September 2008 – p.9/18

From REs to NFAs (cont.)

v R = R1 · R2:
ε

ε

ε

ε

ε

recognizes 1RN1 recognizes 2RN2

.

v R = R∗

1
:

...ε
ε

ε

recognizes 1RN1

17 September 2008 – p.10/18

An Example
R = (b ∪ c ∪ ab)∗

v a ≡ a b ≡ b c ≡ c

v ab ≡ a bε

v b ∪ c ≡
ε c

bε

v b ∪ c ∪ ab ≡
ε bεa

c

bε

εε

v (b ∪ c ∪ ab)∗ ≡
bεa

c

bε

εε

ε

ε

ε

ε

17 September 2008 – p.11/18

From DFAs to REs
v Given a DFA, we want to construct a regular expression that for the

DFA’s language.

v The “hard” part is keeping track of all of the possible paths from the
start state to an accepting state, especially because there can be
many possible loops.

v The key observation is that the symbols that label edges in a DFA
are simple regular expressions.

v We’ll generalize this idea and allow arbitrary regular expressions on edges.
v We’ll use the flexibility of regular expressions to allow us to eliminate one state

from the DFA at a time. We’ll modify the REs for the remaining edges to
account for the deleted states. Thus, our new DFA will recognize the same
language as the original one.

v By successively deleting states, we’ll eventually get to a DFA with a start state,

an accept state, and a single edge from the start state to the accept state. The

label for this edge is the RE corresponding to the original DFA.

17 September 2008 – p.12/18

Eliminating Edges (Example)

2

α1

α3

γ4

γ5

β1

2

3
5

4
0

α2

α3

γ4

γ5

α1 γ5

α1 γ4
β1

2

3
5

4
0

β∗

β∗

α

v Consider paths from state 1 to state 4 that go through state 0.

v Any such path must begin with a string that takes it to state 0 for the first time. α1

describes such strings.

v Then, the path can visit state 0 several times. The expression β∗ describes all such
looping.

v Finally, the path has visited state 0 for the last time and goes to state 4. The
expression γ4 describes that part of the path.

v Thus, the set of strings that start in state 1, pass through state 0 at least once, and

end in state 4 are described by the expression α1β∗γ4.
17 September 2008 – p.13/18

Eliminating Edges (cont)

4
2

α1

α3

γ4

γ5

β1

2

3
5

4
0

β∗α2 γ4

α1 γ4β∗

β∗α2 γ4

β∗α3 γ5

β∗α1 γ5

β∗α3 γ4

1

2

3
5

α

v We can replace all edges in and out of state 0 in the same way as we replaced the
edge from state 1.

v Once we’ve done this, we can eliminate state 0 from the machine.

v The resulting machine accepts the same language as the original machcine.

v We continue, until the we have eliminated all states except for the start and accept

states. The final machine accepts the same language as the original machine. The

final machine has one edge whose label is the regular expression corresponding to

the original DFA.
17 September 2008 – p.14/18

From DFAs to REs (proof 1/3)
To make a complete proof out of the preceeding
observations, we define the automata that we use that
have regular expressions for edge labels.

v A GNFA, G, is a 5-tuple (Q, Σ, E, s, t).

v Q is a finite set of states.

v Σ is a finite set of symbols.

v E : Q × Q → regular expression, is the edge labeling.

v s is the start state, there are no edges going into s.

v t is the accepting state, there are no edges going out of t.

v G accepts w iff there are strings x1, x2, . . . xk and states
q1, q1, . . . qk−1 such that x1 matches the regular expression for
(s, q1), xi matches the label for (qi−1, qi), and xk matches the label
for (qk−1, t).

17 September 2008 – p.15/18

From DFAs to REs (proof 2/3)
Given a DFA, M = (QD,Σ, δD, q0,D, FD), we construct a
GNFA with G = (QG,Σ, E, qstart , qaccept) where

v QG = QD ∪ {qstart , qaccept} – we require qstart , qaccept 6∈ QD.

v If for each c ∈ Ci,j , δ(qi, c) = qj , then E has an edge from qi to qj

labeled with the regular expression
⋃

c∈Ci,j
c.

v There is an edge from qstart to q0,D labeled with ǫ.

v There is an edge from each state in FD to qaccept , and each such
edge is labeled with ǫ.

v By this construction, L(G) = L(M).

17 September 2008 – p.16/18

From DFAs to REs (proof 3/3)

a state
startAdd

qacceptand .
k−state
DFA

k+2−state
GNFA

k+1−state
GNFA

2−state
GNFA

regular
expression

...

eliminateq

17 September 2008 – p.17/18

The coming week
Reading: Note: this is different than the schedule in the Sept. 3 notes

– we’re nearly two lectures ahead of schedule.
September 17 (Today): Regular Expressions

Read Sipser 1.3.

September 19 (Friday): Nonregular Languages – Read Sipser 1.4.
Lecture will cover through Example 1.73 (i.e. pages 77-80).

September 22 (Monday): Pumping Lemma Examples.
The rest of Sipser 1.4 (i.e. pages 80–82).

September 24 (A week from today): Introduction to Context Free Languages – Sipser

2.1.
Lecture will cover through “Designing Context-Free Grammars” (i.e. pages
99-105).

Homework:
September 19 (Friday): Homework 1 due. Homework 2 goes out (due Sept. 26).

Midterm: Oct. 8

17 September 2008 – p.18/18

	Lecture Outline
	Regular Madlibs
	Regular Expressions
	Regular Expressions Examples
	A Few More Remarks
	RE $=$ DFA $=$ NFA
	From REs to NFAs -- strategy
	From REs to NFAs
	From REs to NFAs (cont.)
	An Example
	From DFAs to REs
	Eliminating Edges (Example)
	Eliminating Edges (cont)
	From DFAs to REs (proof 1/3)
	From DFAs to REs (proof 2/3)
	From DFAs to REs (proof 3/3)
	The coming week

