
Equivalence of NFAs and DFAs
Mark Greenstreet, CpSc 421, Term 1, 2008/09

15 September 2008 – p.1/15

Lecture Outline
Equivalence of NFAs and DFAs

v Implementing NFAs in software
v using exhaustive enumeration

v using sets

v Equivalence of NFAs and DFAs
v Every DFA is an NFA
v The powerset construction

v Every NFA is a DFA

v Implementing NFAs in hardware

15 September 2008 – p.2/15

Sipser’s acceptance condition for NFAs
v Let Nms = (Q, Σ, δ, q0, F) be an NFA.

v Just like the NFA I defined on Friday except that δ : Q × Σǫ → 2Q is a function.

v q′ ∈ δ(q, c) iff Nms can move from state q to state q′ when reading c. Note that

c can be ǫ.

v Nms accepts s iff there are y1, y2, . . . ym ∈ Σǫ and
r0, r1, r2, . . . rm ∈ Q such that

v s = y1 · y2 · · · ym.
v r0 = q0.
v ∀i ∈ 1 . . . m. ri ∈ δ(ri−1, yi).

v rm ∈ F .

v The language of NFA Nms is the set of all strings that Nms accepts.

L(Nms) = {s ∈ Σ∗ | Nms accepts s}

15 September 2008 – p.3/15

Exhaustive Enumeration
A direct implementation of Sipser’s acceptance condition.

boolean accept(Σ∗ s) { return(accept(q0, s)); }

boolean accept(Q q, Σ∗ s) {

// first try ǫ-moves

for each q′ ∈ δ(q, ǫ)

if(accept(q′, s)) return(true);

// if s = ǫ, we’re done

if(s == ǫ) return(q ∈ F);

// now try moves for the first symbol of s

c = first(s); x = tail(s); // s = c · x

for each q′ ∈ δ(q, c)

if(accept(q′, x)) return(true);

return(false); // no way to reach an accepting state

}

What’s wrong with this code?

15 September 2008 – p.4/15

Eliminating epsilon-loops
boolean eSearch(Q q, Σ∗ s, Set<Q> V) {

// V is the set of states we’ve already seen on this search.

V = V ∪ {q}; // insert ourself into V .

for each q′ ∈ δ(q, ǫ)

if(q′ 6∈ V)

if(eSearch(q′, V))

return(true);

return(accept(q, s));

}

We can replace the for-loop for ǫ-moves with the call eSearch(q, s, {q}) and we’ll get code
that doesn’t loop forever.

But it will still be slow –
Worst-case run-time Ω(|Q||s|).

Note: for most of this course, we’ll be concerned about computability rather than
efficiency. However, a more efficient algorithm for NFA will also show us to how to
turn a NFA into a DFA.

15 September 2008 – p.5/15

Mark’s acceptance condition for NFAs
v Let Nmrg = (Q, Σ, δ, q0, F) be an NFA.

I’ll use δ : Q × Σǫ → 2Q like Sipser.

f closeǫ(q) be the set of all states reachable from q by zero or more ǫ-moves.

f Extend closeǫ to sets.

f Let step(G, c) be the set of all states reachable from a state in G when reading
symbol c. Let δ(G, x) be the set of all states reachable from a state in G when
reading string x.

f Nmrg accepts s iff

δ(closeǫ({q0}), s) ∩ F 6= ∅

15 September 2008 – p.6/15

Mark’s acceptance condition for NFAs
f Let Nmrg = (Q, Σ, δ, q0, F) be an NFA.

v closeǫ(q) be the set of all states reachable from q by zero or more ǫ-moves.
p ∈ closeǫ(q) iff

p = q

∃q′ ∈ closeǫ(q). p ∈ δ(q′, ǫ)

f Extend closeǫ to sets.

f Let step(G, c) be the set of all states reachable from a state in G when reading
symbol c. Let δ(G, x) be the set of all states reachable from a state in G when
reading string x.

f Nmrg accepts s iff

δ(closeǫ({q0}), s) ∩ F 6= ∅

15 September 2008 – p.6/15

Mark’s acceptance condition for NFAs
f Let Nmrg = (Q, Σ, δ, q0, F) be an NFA.

f closeǫ(q) be the set of all states reachable from q by zero or more ǫ-moves.

v Extend closeǫ to sets.

closeǫ(G) =
[

q∈G

closeǫ(q)

f Let step(G, c) be the set of all states reachable from a state in G when reading
symbol c. Let δ(G, x) be the set of all states reachable from a state in G when
reading string x.

f Nmrg accepts s iff

δ(closeǫ({q0}), s) ∩ F 6= ∅

15 September 2008 – p.6/15

Mark’s acceptance condition for NFAs
f Let Nmrg = (Q, Σ, δ, q0, F) be an NFA.

f closeǫ(q) be the set of all states reachable from q by zero or more ǫ-moves.

f Extend closeǫ to sets.

v Let step(G, c) be the set of all states reachable from a state in G when reading
symbol c. Let δ(G, x) be the set of all states reachable from a state in G when
reading string x.

step(q, c) = closeǫ({q′ | q′ ∈ δ(q, c)}), q ∈ Q, c ∈ Σ

step(G, c) =
[

q∈G

step(q, c), G ⊆ Q, c ∈ Σ

δ(G, ǫ) = G, G ⊆ Q

δ(G, x · c) = step(δ(G, x), c), G ⊆ Q, x ∈ Σ∗, c ∈ Σ

v Nmrg accepts s iff

δ(closeǫ({q0}), s) ∩ F 6= ∅

15 September 2008 – p.6/15

Mark’s acceptance condition for NFAs
v Let Nmrg = (Q, Σ, δ, q0, F) be an NFA.

I’ll use δ : Q × Σǫ → 2Q like Sipser.

f closeǫ(q) be the set of all states reachable from q by zero or more ǫ-moves.

f Extend closeǫ to sets.

f Let step(G, c) be the set of all states reachable from a state in G when reading
symbol c. Let δ(G, x) be the set of all states reachable from a state in G when
reading string x.

f Nmrg accepts s iff

δ(closeǫ({q0}), s) ∩ F 6= ∅

15 September 2008 – p.7/15

Mark’s acceptance condition for NFAs
f Let Nmrg = (Q, Σ, δ, q0, F) be an NFA.

v closeǫ(q) be the set of all states reachable from q by zero or more ǫ-moves.
p ∈ closeǫ(q) iff

p = q

∃q′ ∈ closeǫ(q). p ∈ δ(q′, ǫ)

f Extend closeǫ to sets.

f Let step(G, c) be the set of all states reachable from a state in G when reading
symbol c. Let δ(G, x) be the set of all states reachable from a state in G when
reading string x.

f Nmrg accepts s iff

δ(closeǫ({q0}), s) ∩ F 6= ∅

15 September 2008 – p.7/15

Mark’s acceptance condition for NFAs
f Let Nmrg = (Q, Σ, δ, q0, F) be an NFA.

f closeǫ(q) be the set of all states reachable from q by zero or more ǫ-moves.

v Extend closeǫ to sets.

closeǫ(G) =
[

q∈G

closeǫ(q)

f Let step(G, c) be the set of all states reachable from a state in G when reading
symbol c. Let δ(G, x) be the set of all states reachable from a state in G when
reading string x.

f Nmrg accepts s iff

δ(closeǫ({q0}), s) ∩ F 6= ∅

15 September 2008 – p.7/15

Mark’s acceptance condition for NFAs
f Let Nmrg = (Q, Σ, δ, q0, F) be an NFA.

f closeǫ(q) be the set of all states reachable from q by zero or more ǫ-moves.

f Extend closeǫ to sets.

v Let step(G, c) be the set of all states reachable from a state in G when reading
symbol c. Let δ(G, x) be the set of all states reachable from a state in G when
reading string x.

step(q, c) = closeǫ({q′ | q′ ∈ δ(q, c)}), q ∈ Q, c ∈ Σ

step(G, c) =
[

q∈G

step(q, c), G ⊆ Q, c ∈ Σ

δ(G, ǫ) = G, G ⊆ Q

δ(G, x · c) = step(δ(G, x), c), G ⊆ Q, x ∈ Σ∗, c ∈ Σ

v Nmrg accepts s iff

δ(closeǫ({q0}), s) ∩ F 6= ∅

15 September 2008 – p.7/15

Computing Reachable Sets
A direct implementation of Mark’s acceptance condition.

Set<Q> eClose(Q q, Set<Q> V) {

// states reachable from q by ǫ-moves

if(q ∈ V) return(V); // already seen q

V = V ∪ {q};

for each q′ ∈ δ(q, ǫ)

V = V ∪ eClose(q′, V);

return(V); }

Set<Q> step(Set<Q> G, Σ c) {

// states reachable from G by reading symbol c

}

Set<Q> δ(Set<Q> G, Σ∗ s) {

// states reachable from G by reading string s

}

boolean accept(Σ∗ s) {

return((δ(closeǫ{q0}, s) ∩ F) 6= ∅);

}

15 September 2008 – p.8/15

Computing Reachable Sets
A direct implementation of Mark’s acceptance condition.

Set<Q> eClose(Q q, Set<Q> V) {

// states reachable from q by ǫ-moves}

Set<Q> step(Set<Q> G, Σ c) {

// states reachable from G by reading symbol c

V = ∅;

for each q ∈ G

V = eClose(δ(q, c), V)

return(V);

}

Set<Q> δ(Set<Q> G, Σ∗ s) {

// states reachable from G by reading string s

}

boolean accept(Σ∗ s) {

return((δ(closeǫ{q0}, s) ∩ F) 6= ∅);

}

15 September 2008 – p.8/15

Computing Reachable Sets
A direct implementation of Mark’s acceptance condition.

Set<Q> eClose(Q q, Set<Q> V) {

// states reachable from q by ǫ-moves}

Set<Q> step(Set<Q> G, Σ c) {

// states reachable from G by reading symbol c

}

Set<Q> δ(Set<Q> G, Σ∗ s) {

// states reachable from G by reading string s

if(s == ǫ) return(G);

x = head(s); c = last(s); // s = x · c

return(eClose(step(δ(G,x), c)));

}

boolean accept(Σ∗ s) {

return((δ(closeǫ{q0}, s) ∩ F) 6= ∅);

}

15 September 2008 – p.8/15

Time-Complexity for Reachability
v Processing each symbol can involve considering up to |Q| states,

each of which can have up to |Q| successor states.

v eClose takes at most |Q| time.

v Thus, each symbol of s can be processed in O(|Q|2) time.

v The total times is O(|s| · |Q|2).

v This is much better than the exponential time for the earlier
approach.

15 September 2008 – p.9/15

Equivalence of NFAs and DFAs
v We want to show that the sets of languages recognized by NFAs

and the set recognized by DFAs are the same.

v Showing that every language recognized by a DFA is also
recognized by an NFA is easy: every DFA is an NFA.

v Showing that every language recognized by an NFA is also
recognized by a DFA is more work. That’s what we’ll take on in the
next few slides.

15 September 2008 – p.10/15

From an NFA to an Equivalent DFA
v Basic strategy: we noted that the definitions of NFAs and DFAs are

quite similar – the main difference is the definition of δ.

v Given an NFA, N = (QN , Σ, δN , q0,N , FN), we’ll construct a DFA,
D = (QD, Σ, δD, q0,D, FD) such that L(D) = L(N).

v Our strategy is based on thinking about how we defined the
acceptance condition for an NFA – we wrote a function that keeps
track of the set of possible states that the NFA can be in after
reading each symbol of the input.

v If QN is finite, then the set 2QN is finite as well (even though it may
be very big). We’ll let QD = 2QN : now each state of the DFA
describes the set of states that the NFA could be in at that point.

v Now, we need to define δD, q0,d, and FD.
We’ll start with δD: once we have that, q0,d and FD are pretty
straightforward.

15 September 2008 – p.11/15

Defining the DFA
The key observation is that the step function as defined on slide 6

provides the next-state function that we need for the DFA whose
states are subsets of QN .

v QD = 2QN : states of D are subsets of QN .
v δD = step (the version for sets).

Note that step : 2QN × Σ → 2QN which means that δD : QD × Σ → QD as
required.

v q0,D = closeǫ{q0,N}: note that we need the ǫ-closure so we will accept ǫ if
there is any accepting state that is reachable from q0,N by zero or more
ǫ-moves.

v FD = {B ⊆ QN | B ∩ FN 6= ∅}: The accepting states of D are all states that

contain at least one accepting state of N .

15 September 2008 – p.12/15

Proof that L(D) = L(N)
v Let w be a string in Σ∗.

v I’ll show that w ∈ L(D) iff w ∈ L(N).

v Observe that δD is exactly the same function as δN . See the definitions on slides 7
and 12.

v Proof that L(D) = L(N):

w ∈ L(N)

⇔ (δN (closeǫ{q0,N}, w) ∩ FN) 6= ∅, def. NFA accept, slide 7

⇔ δN (q0,D , w) ∈ FD, def. q0,D and FD , slide 12

⇔ δD(q0,D , w) ∈ FD, δD = δN , as noted above

⇔ w ∈ L(D) def. DFA accept, Sept. 8 lecture notes

15 September 2008 – p.13/15

Example: {ab,aba}∗

4
ε

ε
ε

a b a
0 1 2 3

The NFA:
v QN = {0, 1, 2, 3, 4}

v Σ = {a,b};

v δN (0, ǫ) = {1}, δN (0,a) = ∅, δN (0,b) = ∅

δN (1, ǫ) = ∅, δN (1,a) = {2}, δN (1,b) = ∅

δN (2, ǫ) = ∅, δN (2,a) = ∅, δN (2,b) = {3},

δN (3, ǫ) = {1}, δN (3,a) = {4}, δN (3,b) = ∅,

δN (4, ǫ) = {1}, δN (4,a) = ∅, δN (4,b) = ∅;

v q0,N = 0;

v FN = {0, 3, 4}.

15 September 2008 – p.14/15

This week
Reading: Note: this is different than the schedule in the Sept. 3 notes

– we’re one lecture ahead of schedule.
September 15 (Today): Equivalance of NFAs and DFAs

The rest of Sipser 1.2. (i.e. pages 53-63).

September 17 (Wednesday): Regular Expressions
Read Sipser 1.3. Lecture will cover throud example 1.58 (i.e. pages 63-69).

September 19 (Friday): Equivalence of DFAs and Regular Expressions
The rest of Sipser 1.3 (i.e. pages 69–76).

Homework:
September 19 (next Friday): Homework 1 due. Homework 2 goes out (due Sept.

26).

Midterm: Oct. 8

15 September 2008 – p.15/15

	Lecture Outline
	Sipser's acceptance condition for NFAs
	Exhaustive Enumeration
	Eliminating epsilon-loops
	Mark's acceptance condition for NFAs
	Mark's acceptance condition for NFAs
	Computing Reachable Sets
	Time-Complexity for Reachability
	Equivalence of NFAs and DFAs
	From an NFA to an Equivalent DFA
	Defining the DFA
	Proof that $L(D)
= L(N)$
	Example: ${mrgtt {ab}, mrgtt {aba}}^*$
	This week

