Equivalence of NFAs and DFAs

Mark Greenstreet, CpSc 421, Term 1, 2008/09

15 September 2008 — p.1/15

Lecture Outline
Equivalence of NFAs and DFAs

® Implementing NFAs In software

@ using exhaustive enumeration

@ using sets

® Equivalence of NFAs and DFAs
® Every DFA is an NFA

® The powerset construction

® Every NFA is a DFA

® Implementing NFAs in hardware

15 September 2008 — p.2/15

Sipser’s acceptance condition for NFA

® Let N, = (Q,%,4,qo, F') be an NFA.
@ Just like the NFA | defined on Friday exceptthat § : Q x £ — 2< is a function.

® ¢ c4(q,c) iff Npys can move from state q to state ¢’ when reading c. Note that

c can be e.

® N, accepts s iff there are y1, v, ...y, € 2 and
To,T1,T2,...Tm € @ such that

® s=y Y2 ym.

® ro=qo.

® vicl..m.r; €6(ri1,v5).
® ,, cF.

® The language of NFA N,,, is the set of all strings that V,,s accepts.

L(Nps) = {s € X*| Ny, accepts s}

15 September 2008 — p.3/15

Exhaustive Enumeration

A direct implementation of Sipser’s acceptance condition.

boolean accept(2X* s) { return(accept(qo,)); }

boolean accept(@ q, X* s) {
/[first try e-moves
for each ¢’ € d(q, €)
if(accept(q’ , 8)) return(true);

/l'if s = €, we're done
if(s == €) return(q € F);

I/l now try moves for the first symbol of s
c = first(s); x = tail(s);lls=c-x
for each ¢’ € d(q, ¢)
if(accept(q’ , T)) return(true);
return(false); // no way to reach an accepting state

}

What's wrong with this code?

15 September 2008 — p.4/15

Eliminating epsilon-loops

boolean eSearch(@ g, X* s, Set< Q> V) {
II'V is the set of states we’ve already seen on this search.
V =V U{q}; Ilinsert ourself into V.
for each ¢’ € 6(q, €)
if(q" & V)
ifleSearch(q’, V)

return(true);

return(accept(q, S));

}

We can replace the for-loop for e-moves with the call esearch(q, s, {q}) and we’ll get code
that doesn’t loop forever.

But it will still be slow —
Worst-case run-time Q(|Q|'*)).

Note: for most of this course, we’ll be concerned about computability rather than
efficiency. However, a more efficient algorithm for NFA will also show us to how to
turn a NFA into a DFA.

15 September 2008 — p.5/15

Mark’s acceptance condition for NFAs

® Let Ny = (Q,%,6,qo, F) be an NFA.
'Mused: Q x . — 29 like Sipser.

O closec(q) be the set of all states reachable from ¢ by zero or more e-moves.

O Extend close. to sets.

O Let step(G, ¢) be the set of all states reachable from a state in G when reading
symbol c. Let §(G, x) be the set of all states reachable from a state in G when
reading string .

O Nyurg accepts s iff
6(closec({qo}),s) N F # 0

15 September 2008 — p.6/15

Mark’s acceptance condition for NFAs

O Let Nprg = (Q, %, 6, qo, F) be an NFA,

@ close.(q) be the set of all states reachable from ¢ by zero or more e-moves.
p € closec(q) iff

p=4q
dq’ € closec(q). p € 6(q’,¢€)
O Extend close. to sets.

O Let step(G, ¢) be the set of all states reachable from a state in G when reading
symbol c. Let §(G, x) be the set of all states reachable from a state in G when
reading string .

O Nyurg accepts s iff
6(closec({qo}),s) NF # 0

15 September 2008 — p.6/15

Mark’s acceptance condition for NFAs

O Let Nprg = (Q, %, 6, qo, F) be an NFA,

O closec(q) be the set of all states reachable from ¢ by zero or more e-moves.
@ Extend close. to sets.

closec(G) = U closec(q)
q€G

O Let step(G, ¢) be the set of all states reachable from a state in G when reading
symbol c. Let §(G, x) be the set of all states reachable from a state in G when
reading string .

O Nyrg accepts s iff
6(closec({qo}),s) NF # 0

15 September 2008 — p.6/15

Mark’s acceptance condition for NFAs

O Let Nprg = (Q, %, 6, qo, F) be an NFA,

O closec(q) be the set of all states reachable from ¢ by zero or more e-moves.

O Extend close. to sets.

@ Let step(G,) be the set of all states reachable from a state in G when reading
symbol c. Let §(G, x) be the set of all states reachable from a state in G when

reading string .

step(g, c)
step(G, c)

d(G,€)
(G, x - c)

® N,.., accepts s iff

closec({q' | ¢’ € 6(q,¢c)}),

| step(g, o),

qeG
G,
step(6(G,), c),

qEQ,ceX
GCQ,ceXx

GCQ
GCQ,zeEX*cEX

d(closec({qo}),s) NF # ()

15 September 2008 — p.6/15

Mark’s acceptance condition for NFAs

® Let Ny = (Q,%,6,qo, F) be an NFA.
'Mused: Q x . — 29 like Sipser.

O closec(q) be the set of all states reachable from ¢ by zero or more e-moves.

O Extend close. to sets.

O Let step(G, ¢) be the set of all states reachable from a state in G when reading
symbol c. Let §(G, x) be the set of all states reachable from a state in G when
reading string .

O Nyurg accepts s iff
6(closec({qo}),s) N F # 0

15 September 2008 — p.7/15

Mark’s acceptance condition for NFAs

O Let Nprg = (Q, %, 6, qo, F) be an NFA,

@ close.(q) be the set of all states reachable from ¢ by zero or more e-moves.
p € closec(q) iff

p=4q
dq’ € closec(q). p € 6(q’,¢€)
O Extend close. to sets.

O Let step(G, ¢) be the set of all states reachable from a state in G when reading
symbol c. Let §(G, x) be the set of all states reachable from a state in G when
reading string .

O Nyurg accepts s iff
6(closec({qo}),s) NF # 0

15 September 2008 — p.7/15

Mark’s acceptance condition for NFAs

O Let Nprg = (Q, %, 6, qo, F) be an NFA,

O closec(q) be the set of all states reachable from ¢ by zero or more e-moves.
@ Extend close. to sets.

closec(G) = U closec(q)
q€G

O Let step(G, ¢) be the set of all states reachable from a state in G when reading
symbol c. Let §(G, x) be the set of all states reachable from a state in G when
reading string .

O Nyrg accepts s iff
6(closec({qo}),s) NF # 0

15 September 2008 — p.7/15

Mark’s acceptance condition for NFAs

O Let Nprg = (Q, %, 6, qo, F) be an NFA,

O closec(q) be the set of all states reachable from ¢ by zero or more e-moves.

O Extend close. to sets.

@ Let step(G,) be the set of all states reachable from a state in G when reading
symbol c. Let §(G, x) be the set of all states reachable from a state in G when

reading string .

step(g, c)
step(G, c)

d(G,€)
(G, x - c)

® N,.., accepts s iff

closec({q' | ¢’ € 6(q,¢c)}),

| step(g, o),

qeG
G,
step(6(G,), c),

qEQ,ceX
GCQ,ceXx

GCQ
GCQ,zeEX*cEX

d(closec({qo}),s) NF # ()

15 September 2008 — p.7/15

Computing Reachable Sets

A direct implementation of Mark’s acceptance condition.

Set< () > eClose(Q ¢, Set< Q> V) {
Il states reachable from q by e-moves
if(q € V') return(V); // already seen q
V=V U{g}
for each ¢’ € 6(q, €)

V =V UeClose(q¢’', V);
return(V); }

Set< Q> step(Set< Q> G, X ¢) {
I/ states reachable from G by reading symbol ¢

}

Set< Q> d(Set< Q> G, X* s) {
/I states reachable from (G by reading string s

}

boolean accept(X* s) {
return((d(closec{qo},s) N F') # 0);
}

15 September 2008 — p.8/15

Computing Reachable Sets

A direct implementation of Mark’s acceptance condition.

Set< () > eClose(Q ¢, Set< Q> V) {
/I states reachable from g by e-moves }

Set< (@ > step(Set< Q> G, X ¢) {
I/ states reachable from G by reading symbol ¢
V =10
foreachq € G
V = eClose(d(q, c), V)
return(V);

}

Set< Q> d(Set< Q> G, X* s) {
I/ states reachable from G by reading string s

}

boolean accept(X* s) {
return((d(closee{qo}, s) N F') # 0);
}

15 September 2008 — p.8/15

Computing Reachable Sets

A direct implementation of Mark’s acceptance condition.

Set< () > eClose(Q ¢, Set< Q> V) {
/I states reachable from g by e-moves }

Set< (@ > step(Set< Q> G, X ¢) {
/I states reachable from (G by reading symbol ¢

}

Set< Q> d(Set< Q> G, X% s) {
I/ states reachable from (G by reading string s
if(s == ¢) return(G);
x = head(s);c = last(s);lls=x-c
return(eClose(step (6 (G, x), ¢)));

}

boolean accept(X* s) {
return((0(closee{qo}, s) N F") # 0);
}

15 September 2008 — p.8/15

Time-Complexity for Reachabillity

@® Processing each symbol can involve considering up to |Q| states,
each of which can have up to || successor states.

eClose takes at most |Q| time.
Thus, each symbol of s can be processed in O(]Q|?) time.

The total times is O(|s| - |Q|?).

This is much better than the exponential time for the earlier
approach.

15 September 2008 — p.9/15

Equivalence of NFAs and DFAs

® We want to show that the sets of languages recognized by NFAs
and the set recognized by DFAs are the same.

® Showing that every language recognized by a DFA is also
recognized by an NFA is easy: every DFA is an NFA.

® Showing that every language recognized by an NFA is also
recognized by a DFA is more work. That’s what we’ll take on in the
next few slides.

15 September 2008 — p.10/15

From an NFA to an Equivalent DFA

Basic strategy: we noted that the definitions of NFAs and DFAs are
guite similar — the main difference is the definition of 4.

Given an NFA, N = (Qn, X, 0N, qo. N, Finv), we'll construct a DFA,
D = (QD, >, 0D, d0,D, FD) such that L(D) = L(N)

Our strategy is based on thinking about how we defined the
acceptance condition for an NFA — we wrote a function that keeps
track of the set of possible states that the NFA can be in after
reading each symbol of the input.

If Qn is finite, then the set 29V is finite as well (even though it may
be very big). We'll let Qp = 29~: now each state of the DFA
describes the set of states that the NFA could be in at that point.

Now, we need to define ép, qo.4, and Fp.
We'll start with ép: once we have that, ¢y 4 and Fp are pretty
straightforward.

15 September 2008 — p.11/15

Defining the DFA

The key observation is that the step function as defined on slide 6
provides the next-state function that we need for the DFA whose
states are subsets of ().

® Qp =29n: states of D are subsets of Q.

® 5p = step (the version for sets).
Note that step : 29N x & — 29N which means thatdp : Qp x & — Qp as
required.

o qo,p = closec{qo, v }: note that we need the e-closure so we will accept e if
there is any accepting state that is reachable from go n by zero or more
e-moves.

® = {B C QN | BN Fyn # (0}: The accepting states of D are all states that
contain at least one accepting state of V.

15 September 2008 — p.12/15

Proofthat L(D) = L(N

@® Let w be astringin X*.
® Il showthatw € L(D) iffw € L(N).

@ Observe that §p is exactly the same function as 6. See the definitions on slides |7
and 12.

® Proofthat L(D) = L(N):

w € L(N)
& (On(closec{go. N}, w) N F) # 0, def. NFA accept, slide 7
& On(go,p,w) € Fp, def. o, p and F'p, slide 12
& 6p(go.p,w) € Fp, dp = O, as noted above
& w e L(D) def. DFA accept, Sept. 8 lecture notes

15 September 2008 — p.13/15

Example: 1ab,aba}”
ofeforcre

The NFA:

® QN =1{0,1,2,3,4}

® > ={ab};

® o550, ={1}, 6n(0,a) =0, dn(0,b) =0
on(1,¢e) =0, on(1,a) = {2}, on(1,b) =10
On(2,6) =0, On(28)=0, on(2,b)={3},
on(3,6) ={1}, on(3,a)={4}, 6n(3,D) =0,
On(4,e) ={1}, Jn(4,a)=0, on(4,b) = 0;

® onN=0;
® ry =1{0,3,4}.

15 September 2008 — p.14/15

This week

Reading: Note: this is different than the schedule in the Sept. 3 notes
— we're one lecture ahead of schedule.

September 15 (Today): Equivalance of NFAs and DFAs
The rest of Sipser 1.2. (i.e. pages 53-63).

September 17 (Wednesday): Regular Expressions
Read sipser 1.3. Lecture will cover throud example 1.58 (i.e. pages 63-69).

September 19 (Friday): Equivalence of DFAs and Regular Expressions
The rest of Sipser 1.3 (i.e. pages 69-76).

Homework:

September 19 (next Friday): Homework 1 due. Homework 2 goes out (due Sept.
26).

Midterm: Oct. 8

15 September 2008 — p.15/15

	Lecture Outline
	Sipser's acceptance condition for NFAs
	Exhaustive Enumeration
	Eliminating epsilon-loops
	Mark's acceptance condition for NFAs
	Mark's acceptance condition for NFAs
	Computing Reachable Sets
	Time-Complexity for Reachability
	Equivalence of NFAs and DFAs
	From an NFA to an Equivalent DFA
	Defining the DFA
	Proof that $L(D)
= L(N)$
	Example: ${mrgtt {ab}, mrgtt {aba}}^*$
	This week

