Non-Deterministic Finite Automata

Mark Greenstreet, CpSc 421, Term 1, 2008/09

Lecture Outline

Non-Determinism

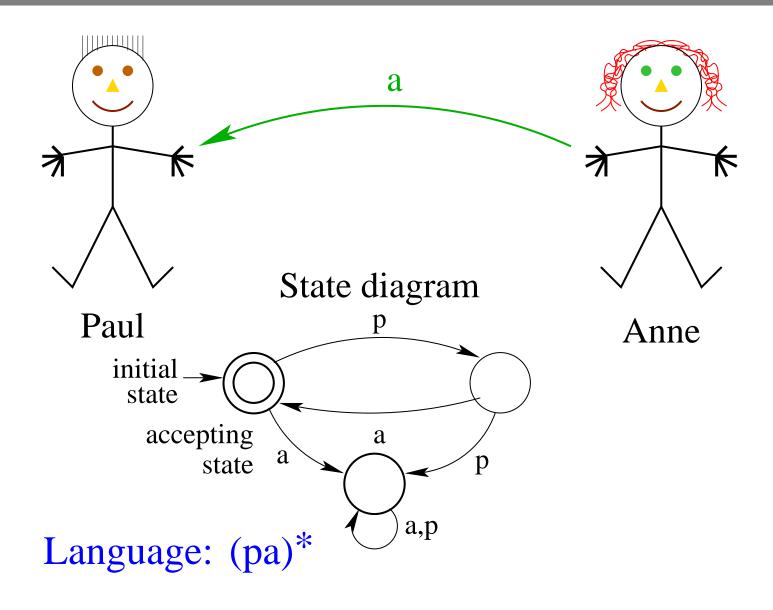
- Motivation
 - Modeling uncertainty
 - Network Protocol example
- Non-deterinisitic Finite Automata
 - Formal definition
 - Diagrams for NFAs
 - Examples

Uncertainty

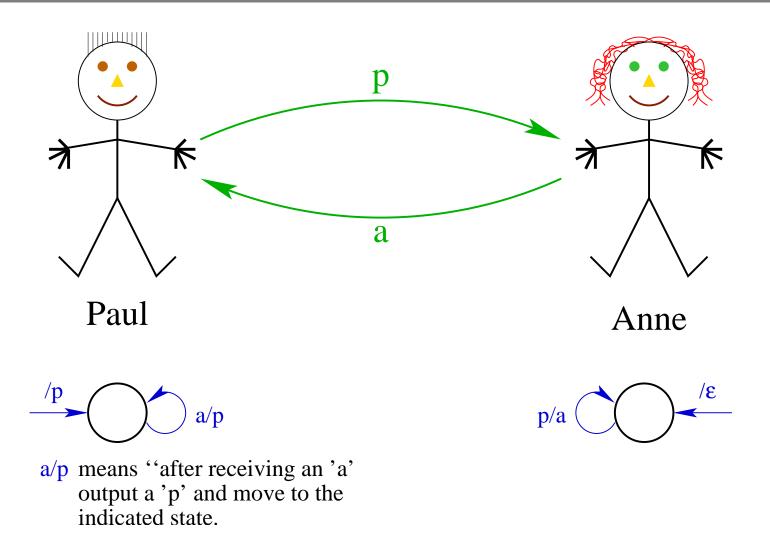
When we write a program or a class or a protocol or a ..., we must account for the fact that we don't know

- What choices the user will make:
 - Select one of many menu options
 - Select one of many on-screen items
 - Type something on the keyboard
 - Do any of these while some other task is running and incomplete?
 - ...
- How a class will be used:
 - What methods will be invoked in what order
 - If the code is multi-threaded, what other threads may be running concurrently,
 - ...
- the order of events in a network
 - when a remote machine will respond
 - what requests we might get from clients
 - ...

A Network Protocol (again)



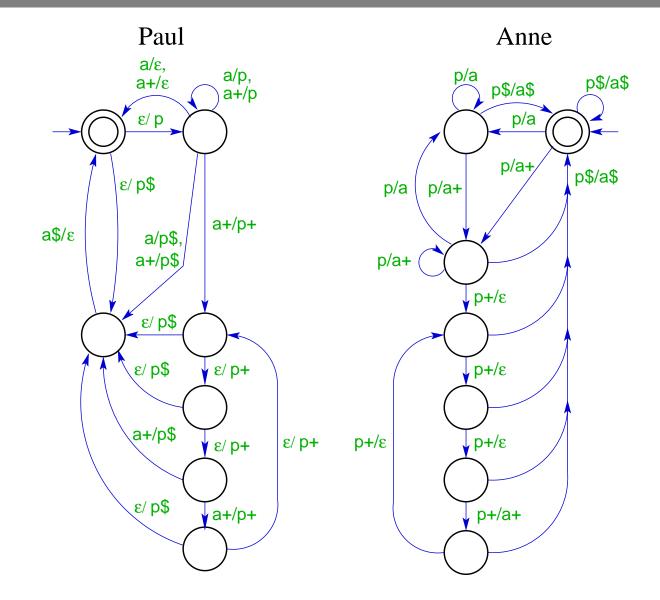
Finite State Transponders



Batch Acknowledgements

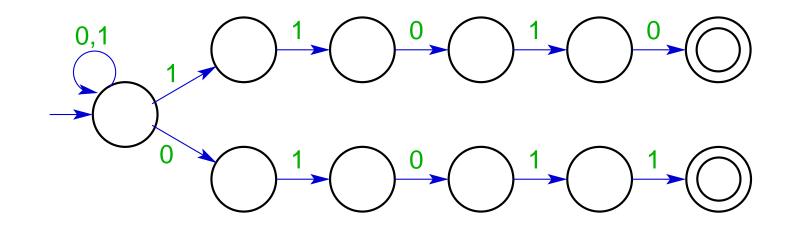
- We can make a more efficient protocol by acknowledging groups of packets instead of individual packets.
- For example, Anne could acknowledge every fourth packet.
 - This means Paul sends up four packets before waiting for an acknowledgement.
- This only works if both Anne and Paul have enough memory to keep track of the number of unacknowledged packets.
- We'll handle this by allowing Anne to send two kinds of acknolwedgements: a and a+. An a+ acknowledgement means she can handle batch acknowledgements.
- Likewise, Paul can send two kinds of packets, p and p+, where a p+ can only be sent after receiving a a+ and indicates that Paul is assuming batch acknowledgements.
- Finally, we'll add symbols p\$ and a\$. Paul sends p\$ to indicate the last packet note that the total number of packets sent is not necessarily a multiple of four. Anne sends a a\$ to acknowledge the last packet.

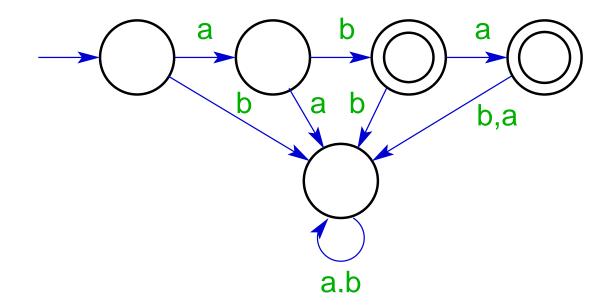
Batch Acknowledgements



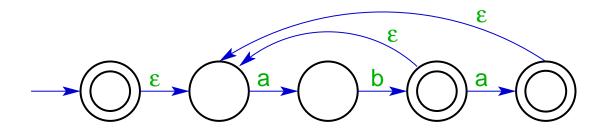
A Simple NFA

A Non-deterministic Finite Automaton (NFA) that recognizes all strings that end 01011 or 11010.

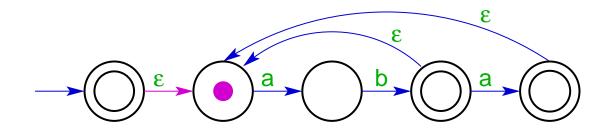




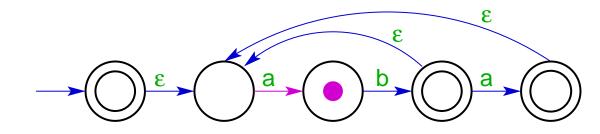
Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.

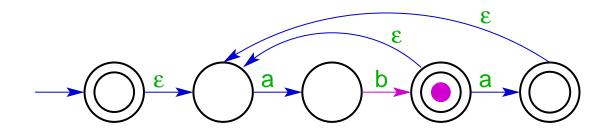


Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



Processing: a b a b a a b a a b a leady read to be read
most recent transition
current state

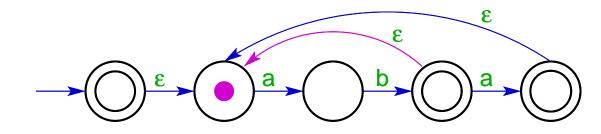
Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



Processing: a b a b a a b

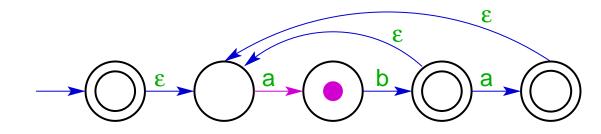
The NFA can choose whether to follow the a edge to the right or the ϵ edge back to the initial state. This time, the NFA goes back to the initial state.

Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



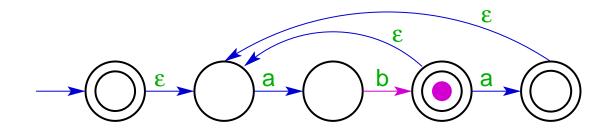
Processing: a b a b a

Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



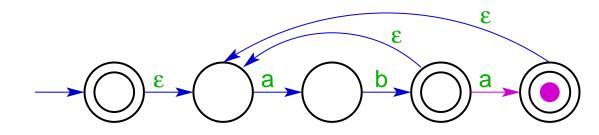
Processing: a b a b a a b already read to be read
→ most recent transition
Current state

Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



Processing: a b a b a a b already read to be read
→ most recent transition
current state

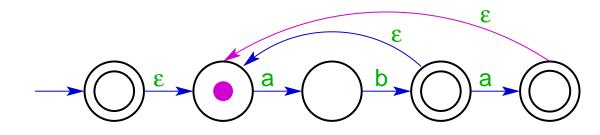
Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



Processing: a b a b a a b already read to be read
→ most recent transition
ourrent state

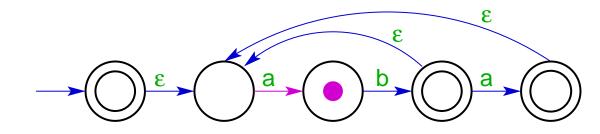
This time, the NFA takes the a edge to the right rather than the ϵ -edge.

Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.

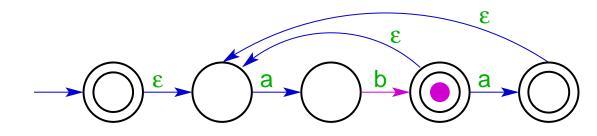


Processing: a b a b a a b a la b already read to be read
→ most recent transition
ourrent state

Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



Key idea: Add ε-edges from each accepting state back to the initial state. Each time the NFA takes one of these edges, it has recognized a string from {ab, aba}. Thus, the NFA recognizes a sequence of such strings.



Processing: a b a b a a b a a b a b a a b a b a a b a b a a b a b a a b a b a a b a

The NFA reaches the end of the string in an accepting state and accepts.

Defining NFAs

A NFA is a 5-tuple, $(Q, \Sigma, \Delta, q_0, F)$, where

- Q is a finite set of states;
- Σ is a finite alphabet;
- $\Delta \subseteq Q \times \Sigma_{\epsilon} \times Q$ is the transition relation;
- $q_0 \in Q$ is the initial state; and
- $F \subseteq Q$ is the set of accepting states.
- $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}.$

In English, its the set of symbols with ϵ , the empty string, added.

- If $(q_1, c, q_2) \in \Delta$, then the NFA can move from state state q_1 to state q_2 when reading symbol *c* from state q_q .
 - If there are states q_1 , q_2 , and q_3 such that (q_1, c, q_2) and (q_1, c, q_3) are both in Δ , the the NFA can move to either q_2 or q_3 when reading symbol c from state q_1 .
 - If $(q_1, \epsilon, q_2) \in \Delta$), then the NFA can move from q_1 to q_2 and stay at the same position in reading the input string.

NFA Acceptance

Let $N = (Q, \Sigma, \Delta, q_0, F)$ be an NFA.

• ϵ -closure: For any state q, we define $close_{\epsilon}(q)$ to be the set of all states reachable in zero or more ϵ -moves from q. Formally, $p \in close_{\epsilon}(q)$ iff

$$p = q$$

$$\exists q' \in close_{\epsilon}(q). \ (q', \epsilon, p) \in \Delta$$

For convenience, we extend $close_{\epsilon}$ to sets. If $G \subseteq Q$,

$$close_{\epsilon}(G) = \bigcup_{q \in G} close_{\epsilon}(q)$$

 \bigcirc We define step(q,c) to be the states that are reachable from q when reading c.

- \bigcirc Extending \triangle to sets and strings.
- \bigcirc NFA N accepts s iff N can reach some accept state at the end of reading s.

NFA Acceptance

Let $N = (Q, \Sigma, \Delta, q_0, F)$ be an NFA.

 \bigcirc ϵ -closure: $close_{\epsilon}(q)$ is the set of all states reachable in zero or more ϵ -moves from q.

We define step(q,c) to be the states that are reachable from q when reading c:

$$step(q,c) = close_{\epsilon}(\{q' \mid (q,c,q') \in \Delta\})$$

and we extend *step* to sets just as we did for $close_{\epsilon}$. If $G \subseteq Q$,

$$step(G,c) = \bigcup_{q \in G} step(q,c)$$

 \bigcirc Extending \triangle to sets and strings.

 \bigcirc NFA N accepts s iff N can reach some accept state at the end of reading s.

NFA Acceptance

Let $N = (Q, \Sigma, \Delta, q_0, F)$ be an NFA.

 \bigcirc ϵ -closure: $close_{\epsilon}(q)$ is the set of all states reachable in zero or more ϵ -moves from q.

 \bigcirc We define step(q,c) to be the states that are reachable from q when reading c.

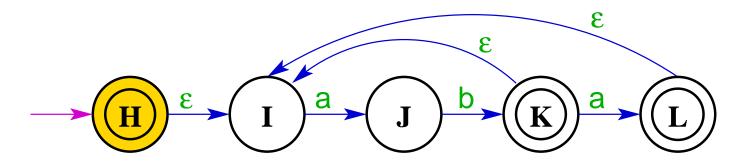
• Extending Δ to sets and strings. For $G \subseteq Q$ and $s \in \Sigma^*$,

$$\Delta(G, \epsilon) = close_{\epsilon}(G)$$

$$\Delta(G, x \cdot c) = step(\Delta(G, x), c)$$

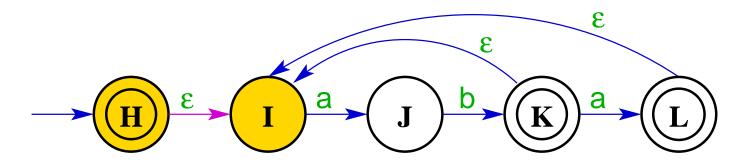
Inituitively, $\Delta(G, s)$ is the set of all states that can be reached by starting from some state in *G* and reading string *s*. Slide 13 provides an example.

NFA N accepts s iff N can reach some accept state at the end of reading s.
 More precisely, N accepts s iff ∆({q₀}, s) ∩ F ≠ Ø.



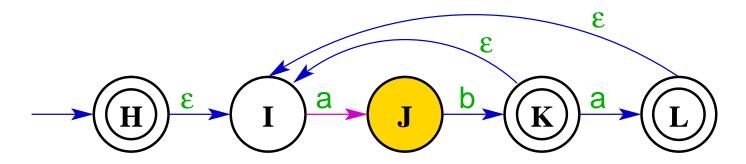
enter initial state

Initial reachable state



Processing: $\begin{vmatrix} a & b & a & b & a & b \\ already read & to & be read \end{vmatrix}$ $\Delta = \{ (H, \epsilon, I), (I, \mathbf{a}, J), (J, \mathbf{b}, K), (K, \epsilon, I), (K, \mathbf{a}, L), (L, \epsilon, I), \}$ $\Delta(\{H\}, \epsilon) = \{H, I\}$

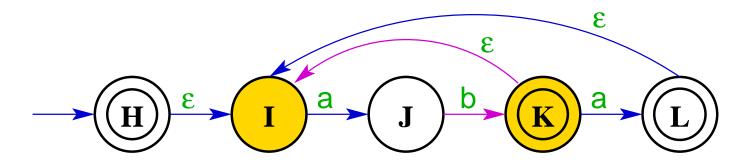
 \rightarrow initial ϵ -moves.



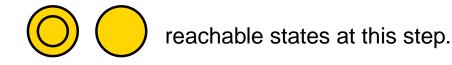
Processing: a b a b a a b already read to be read $\Delta = \{ (H, \epsilon, I), (I, \mathbf{a}, J), (J, \mathbf{b}, K), \\ (K, \epsilon, I), (K, \mathbf{a}, L), (L, \epsilon, I), \}$ $\Delta(\{H\}, \mathbf{a}) = \{J\}$

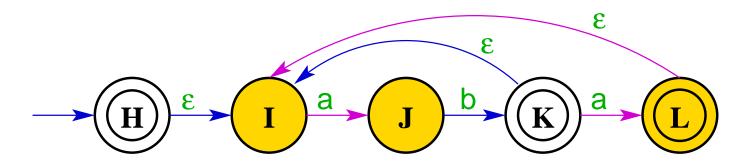
state transistion at this step.

reachable state at this step.

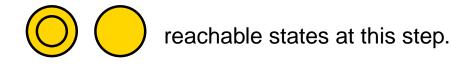


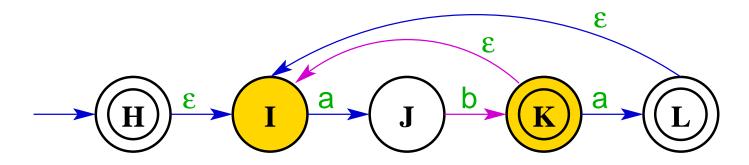
Processing: a b | a b a a b already read | to be read $\Delta = \{ (H, \epsilon, I), (I, \mathbf{a}, J), (J, \mathbf{b}, K), \\ (K, \epsilon, I), (K, \mathbf{a}, L), (L, \epsilon, I), \}$ $\Delta(\{H\}, \mathbf{a}) = \{I, K\}$



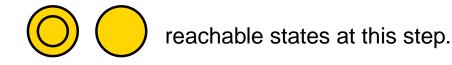


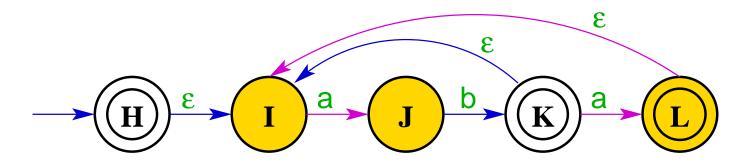
Processing: a b a b a a b already read to be read $\Delta = \{ (H, \epsilon, I), (I, \mathbf{a}, J), (J, \mathbf{b}, K), \\ (K, \epsilon, I), (K, \mathbf{a}, L), (L, \epsilon, I), \}$ $\Delta(\{H\}, \mathbf{a}) = \{I, J, L\}$



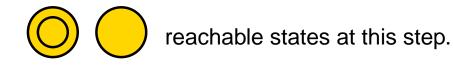


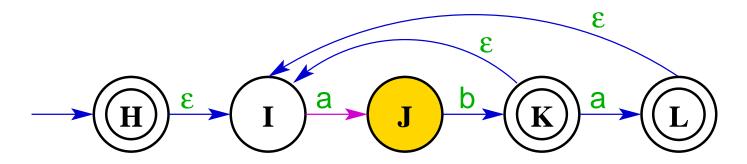
Processing: a b a b | a a b already read to be read $\Delta = \{ (H, \epsilon, I), (I, \mathbf{a}, J), (J, \mathbf{b}, K), (K, \epsilon, I), (K, \mathbf{a}, L), (L, \epsilon, I), \}$ $\Delta(\{H\}, \mathbf{a}) = \{I, K\}$





Processing: a b a b a a b already read to be read $\Delta = \{ (H, \epsilon, I), (I, \mathbf{a}, J), (J, \mathbf{b}, K), \\ (K, \epsilon, I), (K, \mathbf{a}, L), (L, \epsilon, I), \}$ $\Delta(\{H\}, \mathbf{a}) = \{I, J, L\}$

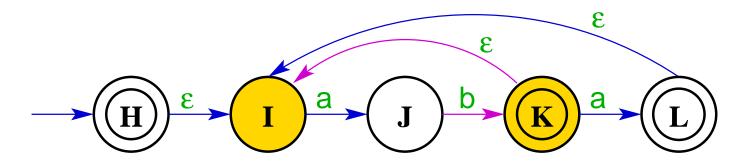




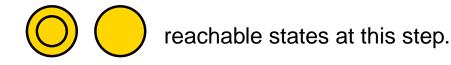
Processing: a b a b a a b already read to be read $\Delta = \{ (H, \epsilon, I), (I, \mathbf{a}, J), (J, \mathbf{b}, K), \\ (K, \epsilon, I), (K, \mathbf{a}, L), (L, \epsilon, I), \}$ $\Delta(\{H\}, \mathbf{a}) = \{J\}$

state transistion at this step.

reachable state at this step.

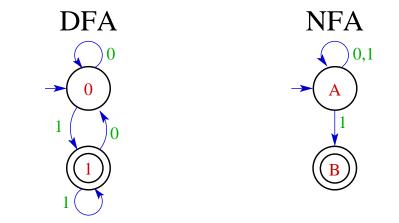


Processing: a b a b a a b already read nothing left to read ACCEPT $\Delta = \{ (H, \epsilon, I), (I, \mathbf{a}, J), (J, \mathbf{b}, K), \\ (K, \epsilon, I), (K, \mathbf{a}, L), (L, \epsilon, I), \}$ $\Delta(\{H\}, \mathbf{a}) = \{I, K\}$



Another example: last symbol is 1

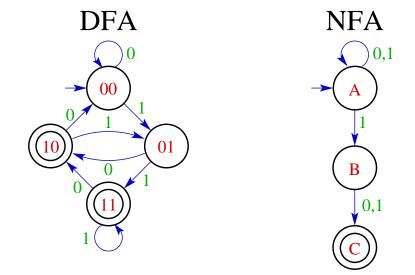
Let $\Sigma = \{0, 1\}$ and let L_1 be the set of all strings that end with a 1. Here are a DFA and a NFA that recognize L_1 :



The DFA and NFA are nearly identical.

L_2 : next to last symbol is 1

Let L_2 be the set of all strings that end with a 1 as the next to last symbol. Here's a DFA and a NFA that recognize L_2 :

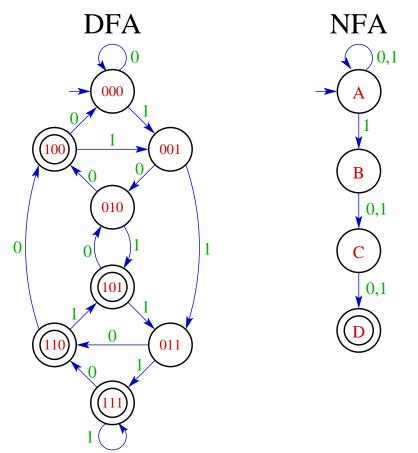


The DFA has states to keep track of the last two symbols read. State xy means that x was the next to the last symbol read, and y was the last symbol read. For example, state 10 means that the last symbol read was a 0 and the next to the last symbol read was a 1 (hence state 10 is accepting).

The NFA remains in its initial state. If the next to the last symbol is a 1, the NFA "guesses" that this is the next-to-last symbos and moves to state B. Then, when it reads the last symbol, it moves to state C and accepts.

L_3 : third from last symbol is 1

Let L_3 be the set of all strings that end with a 1 as the next to last symbol. Here are a DFA and a NFA that recognize L_3 :



The DFA now has states to keep track of the last three symbols read. Hence, it has

L_k : k^{th} from last symbol is 1

Any DFA that recognize L_k must have at least 2^k states.

A NFA with k + 1 states can recognize L_k .

This example shows that a NFA can have exponentially fewer states than the smallest DFA that recognizes the same language.

Summary of the week

Monday, Sept. 8: DFAs.

Basic definitions and acceptance conditions.

Wednesday, Sept. 10: Regular Languages. Basic definitions and the product-machine construction.

Friday, Sept. 12: NFA's

Definitions and acceptance conditions.

We now have the basic computation models for understanding regular languages.

- Next week, we'll extend these to regular-expressions, a way to describe regular languages that looks more a programming language and less like a description of hardware. We'll show that DFA, NFA, and regular expressions all give rise to exactly the same set of languages.
- In the following week, we'll wrap all of this up by showing that there are languages that aren't regular, and we'll show how to prove that a language is not regular.

The coming week

Reading: Note: this is different than the schedule in the Sept. 3 notes

- we're one lecture ahead of schedule.

September 12 (Today): Introduction to NFAs. Read Sipser 1.2. Lecture will cover through Example 1.35 (i.e. pages 47–52).
September 15 (Monday): Equivalance of NFAs and DFAs The rest of Sipser 1.2. (i.e. pages 53-63).
September 17 (Wednesday): Regular Expressions Read Sipser 1.3. Lecture will cover throud example 1.58 (i.e. pages 63-69).
September 19 (Friday): Equivalence of DFAs and Regular Expressions The rest of Sipser 1.3 (i.e. pages 69–76).

Homework:

September 12 (Today): Homework 0 due. Homework 1 will be posted to the web page later today (due Sept. 19).

September 19 (next Friday): Homework 1 due. Homework 2 goes out (due Sept. 26).

Midterm: Oct. 8