
Non-Deterministic Finite Automata
Mark Greenstreet, CpSc 421, Term 1, 2008/09

12 September 2008 – p.1/19

Lecture Outline
Non-Determinism

v Motivation
u Modeling uncertainty

u Network Protocol example

v Non-deterinisitic Finite Automata
u Formal definition
u Diagrams for NFAs

u Examples

12 September 2008 – p.2/19

Uncertainty
When we write a program or a class or a protocol or a . . . , we must

account for the fact that we don’t know
u What choices the user will make:

t Select one of many menu options
t Select one of many on-screen items
t Type something on the keyboard
t Do any of these while some other task is running and incomplete?
t . . .

u How a class will be used:
t What methods will be invoked in what order
t If the code is multi-threaded, what other threads may be running

concurrently,
t . . .

u the order of events in a network
t when a remote machine will respond
t what requests we might get from clients
t . . .

12 September 2008 – p.3/19

A Network Protocol (again)

(pa)
a,p

a p

Paul Anne

a

p

a

State diagram

initial
state

state
accepting

Language: *

12 September 2008 – p.4/19

Finite State Transponders

a/p

/p
a/p

Paul Anne

a

p

p/a
/ε

means ‘‘after receiving an ’a’
output a ’p’ and move to the
indicated state.

12 September 2008 – p.5/19

Batch Acknowledgements
We can make a more efficient protocol by acknowledging groups of packets instead of

individual packets.

For example, Anne could acknowledge every fourth packet.
This means Paul sends up four packets before waiting for an acknowledgement.

This only works if both Anne and Paul have enough memory to keep track of the number
of unacknowledged packets.

We’ll handle this by allowing Anne to send two kinds of acknolwedgements: a and a+.
An a+ acknowledgement means she can handle batch acknowledgements.

Likewise, Paul can send two kinds of packets, p and p+, where a p+ can only be sent
after receiving a a+ and indicates that Paul is assuming batch acknowledgements.

Finally, we’ll add symbols p$ and a$. Paul sends p$ to indicate the last packet – note
that the total number of packets sent is not necessarily a multiple of four. Anne
sends a a$ to acknowledge the last packet.

12 September 2008 – p.6/19

Batch Acknowledgements

ε/ p

a/ε,
a+/ε

a$/ε

ε/ p$

ε/ p+

ε/ p$

ε/ p$

ε/ p$

ε/ p+

ε/ p+

p+/ε

p+/ε

p+/εp+/ε

a+/p
a/p,

a+/p+

a+/p$
a/p$,

a+/p$

a+/p+

p$/a$p$/a$

p/a

p/a

p/a+

p/a+

p/a p/a+
p$/a$

Paul Anne

p+/a+

12 September 2008 – p.7/19

A Simple NFA
A Non-deterministic Finite Automaton (NFA) that
recognizes all strings that end 01011 or 11010.

00,1

1

0 1

1 1

1 1

0

0

12 September 2008 – p.8/19

A DFA that recognizes{ab,aba}
a b a

ab b

a,b

b,a

12 September 2008 – p.9/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

ε

ε
ε

a b a

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

The NFA can choose whether to follow the a edge to the right or the ǫ

edge back to the initial state. This time, the NFA goes back to the
initial state.

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

This time, the NFA takes the a edge to the right rather than the ǫ-edge.

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

12 September 2008 – p.10/19

A NFA that recognizes{ab,aba}∗

Key idea: Add ǫ-edges from each accepting state back to the initial
state. Each time the NFA takes one of these edges, it has
recognized a string from {ab,aba}. Thus, the NFA recognizes a
sequence of such strings.

to be readalready read

ε

ε
ε

a b a

Processing: a b a b a a b

most recent transition
current state

The NFA reaches the end of the string in an accepting state and
accepts.

12 September 2008 – p.10/19

Defining NFAs
A NFA is a 5-tuple, (Q, Σ, ∆, q0, F), where

u Q is a finite set of states;
u Σ is a finite alphabet;
u ∆ ⊆ Q × Σǫ × Q is the transition relation;
u q0 ∈ Q is the initial state; and

u F ⊆ Q is the set of accepting states.

u Σǫ = Σ ∪ {ǫ}.
In English, its the set of symbols with ǫ, the empty string, added.

u If (q1, c, q2) ∈ ∆, then the NFA can move from state state q1 to state q2 when
reading symbol c from state qq .
t If there are states q1, q2, and q3 such that (q1, c, q2) and (q1, c, q3) are both

in ∆, the the NFA can move to either q2 or q3 when reading symbol c from
state q1.

t If (q1, ǫ, q2) ∈ ∆), then the NFA can move from q1 to q2 and stay at the
same position in reading the input string.

12 September 2008 – p.11/19

NFA Acceptance
Let N = (Q,Σ,∆, q0, F) be an NFA.

v ǫ-closure: For any state q, we define closeǫ(q) to be the set of all states reachable in
zero or more ǫ-moves from q. Formally, p ∈ closeǫ(q) iff

p = q

∃q′ ∈ closeǫ(q). (q′, ǫ, p) ∈ ∆

For convenience, we extend closeǫ to sets. If G ⊆ Q,

closeǫ(G) =
[

q∈G

closeǫ(q)

f We define step(q, c) to be the states that are reachable from q when reading c.

f Extending ∆ to sets and strings.

f NFA N accepts s iff N can reach some accept state at the end of reading s.

12 September 2008 – p.12/19

NFA Acceptance
Let N = (Q,Σ,∆, q0, F) be an NFA.

f ǫ-closure: closeǫ(q) is the set of all states reachable in zero or more ǫ-moves from q.

v We define step(q, c) to be the states that are reachable from q when reading c:

step(q, c) = closeǫ({q′ | (q, c, q′) ∈ ∆})

and we extend step to sets just as we did for closeǫ. If G ⊆ Q,

step(G, c) =
[

q∈G

step(q, c)

f Extending ∆ to sets and strings.

f NFA N accepts s iff N can reach some accept state at the end of reading s.

12 September 2008 – p.12/19

NFA Acceptance
Let N = (Q,Σ,∆, q0, F) be an NFA.

f ǫ-closure: closeǫ(q) is the set of all states reachable in zero or more ǫ-moves from q.

f We define step(q, c) to be the states that are reachable from q when reading c.

v Extending ∆ to sets and strings.
For G ⊆ Q and s ∈ Σ∗,

∆(G, ǫ) = closeǫ(G)

∆(G, x · c) = step(∆(G, x), c)

Inituitively, ∆(G, s) is the set of all states that can be reached by starting from some
state in G and reading string s. Slide 13 provides an example.

v NFA N accepts s iff N can reach some accept state at the end of reading s.
More precisely, N accepts s iff ∆({q0}, s) ∩ F 6= ∅.

12 September 2008 – p.12/19

Acceptance example

to be readalready read

ε
ε

a b aε
I J K L

Processing: a b a b a a b

H

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

Initial reachable state

enter initial state

12 September 2008 – p.13/19

Acceptance example

to be readalready read

ε
ε

a b aε
I J K L

Processing: a b a b a a b

H

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

closeǫ of initial state.

∆({H}, ǫ) = {H, I}

initial ǫ-moves.

12 September 2008 – p.13/19

Acceptance example
ε

ε

a b aε
I J K L

Processing: a b a b a a b

H

to be readalready read

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

∆({H},a) = {J}

reachable state at this step.

state transistion at this step.

12 September 2008 – p.13/19

Acceptance example
ε

ε

a b aε
I J K L

Processing: a b a b a a b

H

to be readalready read

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

∆({H},a) = {I,K}

reachable states at this step.

possible state transistions at this step.

12 September 2008 – p.13/19

Acceptance example
ε

ε

a b aε
I J K L

Processing: a b a b a a b

H

to be readalready read

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

∆({H},a) = {I, J, L}

reachable states at this step.

possible state transistions at this step.

12 September 2008 – p.13/19

Acceptance example
ε

ε

a b aε
I J K L

Processing: a b a b a a b

H

to be readalready read

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

∆({H},a) = {I,K}

reachable states at this step.

possible state transistions at this step.

12 September 2008 – p.13/19

Acceptance example
ε

ε

a b aε
I J K L

Processing: a b a b a a b

H

to be readalready read

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

∆({H},a) = {I, J, L}

reachable states at this step.

possible state transistions at this step.

12 September 2008 – p.13/19

Acceptance example
ε

ε

a b aε
I J K L

Processing: a b a b a a b

H

to be readalready read

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

∆({H},a) = {J}

reachable state at this step.

state transistion at this step.

12 September 2008 – p.13/19

Acceptance example
ε

ε

a b aε
I J K L

Processing: a b a b a a b

H

already read left to read
nothing ACCEPT

∆ = { (H, ǫ, I), (I,a, J), (J,b, K),

(K, ǫ, I), (K,a, L), (L, ǫ, I), }

∆({H},a) = {I,K}

reachable states at this step.

possible state transistions at this step.

12 September 2008 – p.13/19

Another example: last symbol is1
Let Σ = {0,1} and let L1 be the set of all strings that end
with a 1. Here are a DFA and a NFA that recognize L1:

1

DFA
0

1 0

NFA
0,1

1

A

B

0

1

The DFA and NFA are nearly identical.

12 September 2008 – p.14/19

L2: next to last symbol is1
Let L2 be the set of all strings that end with a 1 as the next
to last symbol. Here’s a DFA and a NFA that recognize L2:

0 1

DFA

00

10 01

11

1

NFA
0,1

1

0,1

A

B

C

0

0

10 1

The DFA has states to keep track of the last two symbols read. State xy means that x

was the next to the last symbol read, and y was the last symbol read. For example,
state 10 means that the last symbol read was a 0 and the next to the last symbol
read was a 1 (hence state 10 is accepting).

The NFA remains in its initial state. If the next to the last symbol is a 1, the NFA
“guesses” that this is the next-to-last symbos and moves to state B. Then, when it
reads the last symbol, it moves to state C and accepts.

12 September 2008 – p.15/19

L3: third from last symbol is 1
Let L3 be the set of all strings that end with a 1 as the next
to last symbol. Here are a DFA and a NFA that recognize
L3:

1

1

1

0 1

0 1

000

001100

0 1

0

1

0,1

1

0,1

0,1

A

B

C

D

NFADFA

0

1

010

101

111

0 0

0

110 011

The DFA now has states to keep track of the last three symbols read. Hence, it has
23 = 8 states. The NFA only needs four states.

12 September 2008 – p.16/19

Lk: kth from last symbol is1
Any DFA that recognize Lk must have at least 2k states.

A NFA with k + 1 states can recognize Lk.

This example shows that a NFA can have exponentially fewer states than the smallest
DFA that recognizes the same language.

12 September 2008 – p.17/19

Summary of the week
Monday, Sept. 8: DFAs.

Basic definitions and acceptance conditions.

Wednesday, Sept. 10: Regular Languages.
Basic definitions and the product-machine construction.

Friday, Sept. 12: NFA’s
Definitions and acceptance conditions.

We now have the basic computation models for understanding regular
languages.

u Next week, we’ll extend these to regular-expressions, a way to describe regular
languages that looks more a programming language and less like a description
of hardware. We’ll show that DFA, NFA, and regular expressions all give rise to
exactly the same set of languages.

u In the following week, we’ll wrap all of this up by showing that there are

languages that aren’t regular, and we’ll show how to prove that a language is

not regular.

12 September 2008 – p.18/19

The coming week
Reading: Note: this is different than the schedule in the Sept. 3 notes

– we’re one lecture ahead of schedule.
September 12 (Today): Introduction to NFAs.

Read Sipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47–52).

September 15 (Monday): Equivalance of NFAs and DFAs
The rest of Sipser 1.2. (i.e. pages 53-63).

September 17 (Wednesday): Regular Expressions
Read Sipser 1.3. Lecture will cover throud example 1.58 (i.e. pages 63-69).

September 19 (Friday): Equivalence of DFAs and Regular Expressions
The rest of Sipser 1.3 (i.e. pages 69–76).

Homework:
September 12 (Today): Homework 0 due. Homework 1 will be posted to the web

page later today (due Sept. 19).

September 19 (next Friday): Homework 1 due. Homework 2 goes out (due Sept.
26).

Midterm: Oct. 8
12 September 2008 – p.19/19

	Lecture Outline
	Uncertainty
	A Network Protocol (again)
	Finite State Transponders
	Batch Acknowledgements
	Batch Acknowledgements
	A Simple NFA
	A DFA that recognizes ${mrgtt {ab},mrgtt {aba}}$
	A NFA that recognizes ${mrgtt {ab},mrgtt {aba}}^*$
	Defining NFAs
	NFA Acceptance
	Acceptance example
	Another example: last symbol is mrgtt {1}
	L_2: next to last symbol is mrgtt {1}
	L_3: third from last symbol is mrgtt {1}
	L_k: k^{th} from last symbol is mrgtt {1}
	Summary of the week
	The coming week

