Regular Languages

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Lecture Outline

Regular Languages

- Definition of regular languages
- Closure properties

Lecture Outline

Regular Languages

- Definition of regular languages
- Regular languages are recognized by finite automata
- Examples
- Closure properties

Languages (review)

A language is a set of strings.

- Let Σ be a finite set, called an alphabet.
Σ^{*} is the set of all strings of Σ, i.e. sequences of zero or more symbols from Σ.
- A language is a subset of Σ^{*}. Examples:

Example, $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, and L_{1} is the set of all strings that of length at most two:

$$
L_{1}=\{\epsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{~b} \cdot \mathrm{~b}\}
$$

With Σ as above, let L_{2} be the set of all strings where every a is followed immediately by $a \mathrm{~b}$:

$$
L_{2}=\{\epsilon, \text { b. ab, b.b, abb, bab. b.b.b, } \ldots\}
$$

With Σ as above, let L_{3} be the set of all strings that have more a's than b's:

$$
L_{3}=\{\text { a, aa, aaa, aab, aba }, \text { aab }, \ldots\}
$$

Deterministic Finite Automata (review)

- A deterministic finite automaton (DFA) is a 5-tuple, $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where:
Q is a finite set of states.
Σ is a finite set of symbols.
$\delta: Q \times \Sigma \rightarrow Q$ is the next state function.
q_{0} is the initial state.
F is the set of accepting states.
- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.

For $s \in \Sigma^{*}$,

$$
\begin{aligned}
\delta(q, s) & =q, & & \text { if } s=\epsilon \\
& =\delta(\delta(q, x), c), & & \text { if } s=x \cdot c \text { for } c \in \Sigma
\end{aligned}
$$

The language accepted by M is

$$
L(M)=\left\{s \in \Sigma^{*} \mid \delta\left(q_{0}, s\right) \in F\right\}
$$

DFA examples

$$
L\left(M_{1}\right)=\left\{s \in \Sigma^{*} \left\lvert\, \begin{array}{l}
\text { Every a in } s \text { is followed by a } \mathrm{b} \text { without } \\
\text { an intervening } \mathrm{c} .
\end{array}\right.\right\}
$$

DFA examples

$L\left(M_{2}\right)=\left\{s \in \Sigma^{*} \mid s\right.$ ends with three consecutive a's. $\}$

DFA examples

Regular Languages (Definition)

A language, B, is a regular language iff there is some DFA M such that $L(M)=B$.

In other words, the regular languages are the languages that are recognized by DFAs.

To show that a language is regular, we can construct a DFA that recognizes is.

- Conversely, we can show that a language is not regular by proving that there can be no DFA that accepts it.

Regular Languages (Properties)

The regular languages are closed under:
Complement: If B is a regular language, then so is \bar{B}.

- A string is in \bar{B} iff it is not in B.

Intersection: If B_{1} and B_{2} are regular languages, then so is $B_{1} \cap B_{2}$.

- A string is in $B_{1} \cap B_{2}$ iff it is in both B_{1} and B_{2}.
- Because we have complement and intersection, we can conclude that the union, difference, symmetric difference, etc. of regular langauges is regular.

Concatenation: If B_{1} and B_{2} are regular languages, then so is $B_{1} \cdot B_{2}$.

- A string, s, is in $B_{1} \cdot B_{2}$ iff there are strings x and y such that $x \in B_{1}, y \in B_{2}$, and $s=x \cdot y$. Note that x and/or y may be ϵ.

Kleene star: B is a regular language, then so is B^{*}.

- A string, s, is in B^{*} iff $s=\epsilon$ or there are strings x and y such that $x \in B^{*}$, $y \in B$, and $s=x \cdot y$.
Note that even if $B=\emptyset, \epsilon \in B^{*}$. Thus, for any language $B, B^{*} \neq \emptyset$.

Complement example

$$
L\left(M^{\prime}\right)=\left\{\begin{array}{l|l}
s \in \Sigma^{*} & \begin{array}{l}
s \text { ends with an a or has an a followed } \\
\text { immediately by a } c .
\end{array}
\end{array}\right\}
$$

Closure under Complement

Let $B \subseteq \Sigma^{*}$ be a regular language.
Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA that recognizes B.
Let $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, \bar{F}\right) . M^{\prime}$ recognizes \bar{B}.
Proof: let $s \in \Sigma^{*}$ be a string.

- If $s \in B$, then $\delta\left(q_{0}, s\right) \in F$.

Thus, $\delta\left(q_{0}, s\right) \notin \bar{F}$.
Thus $s \notin L\left(M^{\prime}\right)$.

- If $s \notin B$, then $\delta\left(q_{0}, s\right) \notin F$.

Thus, $\delta\left(q_{0}, s\right) \in \bar{F}$.
Thus $s \in L\left(M^{\prime}\right)$.
\bar{B} is recognized by a DFA; therefore, \bar{B} is regular.
\square

Closure under Intersection

- Let $B_{1}, B_{2} \subseteq \Sigma^{*}$ be regular languages.
- Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1,0}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2,0}, F_{2}\right)$ be DFAs that recognize B_{1} and B_{2} respectively.
- Let $M^{\cap}=\left(Q_{1} \times Q_{2}, \Sigma, \delta, q_{0}, F_{1} \times F_{2}\right)$ where

$$
\begin{aligned}
q_{0} & =\left(q_{1,0}, q_{2,0}\right) \\
\delta\left(\left(q_{1}, q_{2}\right), c\right) & =\left(\delta_{1}\left(q_{1}, c\right), \delta_{2}\left(q_{2}, c\right)\right)
\end{aligned}
$$

for any $q_{1} \in Q_{1}, q_{2} \in Q_{2}$ and $c \in \Sigma$.
M^{\cap} recognizes $B^{1} \cap B^{2}$.
Proof on next slide.

Proof that $L\left(M^{\cap}\right)=B_{1} \cap B_{2}$

Let $s \in \Sigma^{*}$ be a string.
First, we note that for any string $s \in \Sigma^{*}, \delta\left(\left(q_{1}, q_{2}\right), s\right)=\left(\delta\left(q_{1}, s\right), \delta\left(q_{2}, s\right)\right)$.
This can be proven by induction (see slide 15).
If $s \in B_{1} \cap B_{1}$, then $s \in B_{1}$ and $s \in B_{2}$.
Thus, $\delta_{1}\left(q_{0,1}, s\right) \in F_{1}$ and $\delta_{2}\left(q_{0,2}, s\right) \in F_{2}$.
Thus,

$$
\begin{array}{rlrl}
\delta\left(q_{0}, s\right) & & \\
& =\delta\left(\left(q_{0,1}, q_{0,2}\right), s\right), & & \text { def. } q_{0} \\
& \left.=\left(\delta_{1}\left(q_{0,1}, s\right), \delta_{2}\left(q_{0,2}\right), s\right)\right), & & \text { def. } \delta \\
& \in F_{1} \times F_{2}, & & \left(s \in B_{1}\right) \Rightarrow \delta_{1}\left(q_{0,1}, s\right) \in F_{1} \\
& & \left(s \in B_{2}\right) \Rightarrow \delta_{1}\left(q_{0,2}, s\right) \in F_{2} \\
\therefore s & =L\left(M^{\cap}\right) & &
\end{array}
$$

If $s \notin B_{1}$, then \ldots

Proof that $L\left(M^{\cap}\right)=B_{1} \cap B_{2}$

Let $s \in \Sigma^{*}$ be a string.

First, we note that for any string $s \in \Sigma^{*}, \delta\left(\left(q_{1}, q_{2}\right), s\right)=\left(\delta\left(q_{1}, s\right), \delta\left(q_{2}, s\right)\right)$.
This can be proven by induction (see slide 15).
If $s \in B_{1} \cap B_{1}$, then $s \in B_{1}$ and $s \in B_{2}$.
Thus, $\delta_{1}\left(q_{0,1}, s\right) \in F_{1}$ and $\delta_{2}\left(q_{0,2}, s\right) \in F_{2}$.
Thus, $s \in L\left(M^{\cap}\right)$.

If $s \notin B_{1}$, then $\delta\left(q_{0}, s\right)=\left(q_{1}, q_{2}\right)$ with $q_{1} \notin F_{1}$ - just work out $\delta\left(q_{0}, s\right)$ as above.
Thus, $\left(q_{1}, q_{2}\right) \notin F_{1}$ and $s \notin L\left(M^{\cap}\right)$.
If $s \notin B_{2}$, then $s \notin L\left(M^{\cap}\right)$ by an argument equivalent to the one for $s \notin B_{1}$. Thus, $\delta\left(q_{0}, s\right) \in \bar{F}$.
Thus $s \in L\left(M^{\prime}\right)$.
$\therefore s \in L\left(M^{\cap}\right.$ iff $s \in B_{1} \cap B_{2}$.

Closure under Intersection (cont.)

Let $B_{1}, B_{2} \subseteq \Sigma^{*}$ be a regular language.
Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1,0}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2,0}, F_{2}\right)$ be DFAs that recognize B_{1} and B_{2} respectively.

- Let $M^{\cap}=\left(Q_{1} \times Q_{2}, \Sigma, \delta, q_{0} F_{1} \times F_{2}\right)$ where

$$
\begin{aligned}
q_{0} & =\left(q_{1,0}, q_{2,0}\right) \\
\delta\left(\left(q_{1}, q_{2}\right), c\right) & =\left(\delta_{1}\left(q_{1}, c\right), \delta_{2}\left(q_{2}, c\right)\right)
\end{aligned}
$$

for any $q_{1} \in Q_{1}, q_{2} \in Q_{2}$ and $c \in \Sigma$. M^{\cap} recognizes $B^{1} \cap B^{2}$.

- $B_{1} \cap B_{2}$ is recognized by a DFA; therefore, \bar{B} is regular.
- Note: M^{\cap} is called a product machine because of the use of cartesian cross-product to define the set of states.

Intersection Example

III

This week

Reading:

September 10 (Today): Sipser 1.1 (continued).
Lecture will cover the rest of the section (i.e. pages 40-47).
September 12 (Friday): Sipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47-52).
Homework:
September 12 (Friday): Homework 0 due. Homework 1 goes out (due Sept. 19).

Proof that $\delta\left(\left(q_{1}, q_{2}\right), s\right)=\ldots$

By induction on s :

case $s=\epsilon$:

$$
\begin{aligned}
\delta & \left(\left(q_{1}, q_{2}\right), \epsilon\right) \\
& =\left(q_{1}, q_{2}\right), \\
& \text { def. } \delta \text { for strings } \\
\quad=\left(\delta_{1}\left(q_{1}, \epsilon\right) \delta_{2}\left(q_{2}, \epsilon\right)\right), & "
\end{aligned}
$$

case $s=x \cdot c$:

$$
\begin{array}{rll}
\delta & \left(\left(q_{1}, q_{2}\right), x \cdot c\right) & \\
\quad=\delta\left(\delta\left(\left(q_{1}, q_{2}\right), x\right), c\right), & & \text { def. } \delta \text { for strings } \\
\quad=\delta\left(\left(\delta_{1}\left(q_{1}, x\right), \delta_{2}\left(q_{2}, x\right)\right), c\right) & & \text { ind. hyp. } \\
\quad=\left(\delta_{1}\left(\delta_{1}\left(q_{1}, x\right), c\right), \delta_{2}\left(\delta_{2}\left(q_{2}, x\right), c\right)\right) & & \text { def. } \delta \\
& =\left(\delta_{1}\left(q_{1}, s\right), \delta_{2}\left(q_{2}, s\right)\right), & \\
\text { def. } \delta_{1}, \delta_{2} \text { for strings }
\end{array}
$$

