Regular Languages

Mark Greenstreet, CpSc 421, Term 1, 2006/07

Lecture Outline

Regular Languages

- Definition of regular languages
- Closure properties

Lecture Outline

Regular Languages

- Definition of regular languages
 - Regular languages are recognized by finite automata
 - Examples
- Closure properties

Languages (review)

A language is a set of strings.

- Let Σ be a finite set, called an alphabet.
- Σ^* is the set of all strings of Σ , i.e. sequences of zero or more symbols from Σ .

A language is a subset of Σ^* . Examples:

Example, $\Sigma = \{a, b\}$, and L_1 is the set of all strings that of length at most two:

$$L_1 = \{\epsilon, a, b, aa, ab, ba, bb\}$$

• With Σ as above, let L_2 be the set of all strings where every a is followed immediately by a b:

$$L_2 = \{\epsilon, b, ab, bb, abb, bab, bbb, \ldots\}$$

With Σ as above, let L_3 be the set of all strings that have more a's than b's:

$$L_3 = \{a, aa, aaa, aab, aba, aab, \ldots\}$$

8 September 2008 - p.3/14

Deterministic Finite Automata (review)

- A deterministic finite automaton (DFA) is a 5-tuple, $(Q, \Sigma, \delta, q_0, F)$ where:
 - Q is a finite set of states.
 - Σ is a finite set of symbols.
 - $\delta: Q \times \Sigma \rightarrow Q$ is the next state function.
 - q_0 is the initial state.

F is the set of accepting states.

• Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.

For $s \in \Sigma^*$,

$$\begin{array}{lll} \delta(q,s) &=& q, & \quad \mbox{if } s = \epsilon \\ &=& \delta(\delta(q,x),c), & \mbox{if } s = x \cdot c \mbox{ for } c \in \Sigma \end{array}$$

The language accepted by M is

$$L(M) = \{s \in \Sigma^* \mid \delta(q_0, s) \in F\}$$

DFA examples

$$L(M_1) = \left\{ s \in \Sigma^* \right\}$$

Every a in s is followed by a b without an intervening c.

DFA examples

 $L(M_2) = \{s \in \Sigma^* \mid s \text{ ends with three consecutive a's.}\}$

DFA examples

$$L(M_3) = \begin{cases} s \in \Sigma^* \\ s \in \Sigma^* \end{cases}$$
 the difference between the number of
a's in s and the number of b's is a mul-
tiple of 5.

Regular Languages (Definition)

- A language, B, is a regular language iff there is some DFA M such that L(M) = B.
- In other words, the regular languages are the languages that are recognized by DFAs.
 - To show that a language is regular, we can construct a DFA that recognizes is.
 - Conversely, we can show that a language is not regular by proving that there can be no DFA that accepts it.

Regular Languages (Properties)

The regular languages are closed under:

Complement: If *B* is a regular language, then so is \overline{B} .

• A string is in \overline{B} iff it is not in B.

Intersection: If B_1 and B_2 are regular languages, then so is $B_1 \cap B_2$.

• A string is in $B_1 \cap B_2$ iff it is in both B_1 and B_2 .

Because we have complement and intersection, we can conclude that the union, difference, symmetric difference, etc. of regular langauges is regular.

Concatenation: If B_1 and B_2 are regular languages, then so is $B_1 \cdot B_2$.

A string, s, is in $B_1 \cdot B_2$ iff there are strings x and y such that $x \in B_1$, $y \in B_2$, and $s = x \cdot y$. Note that x and/or y may be ϵ .

Kleene star: *B* is a regular language, then so is B^* .

- A string, s, is in B^* iff $s = \epsilon$ or there are strings x and y such that $x \in B^*$, $y \in B$, and $s = x \cdot y$.
- Note that even if $B = \emptyset$, $\epsilon \in B^*$. Thus, for any language $B, B^* \neq \emptyset$.

Complement example

 $L(M') = \left\{ s \in \Sigma^* \mid \begin{array}{c} s \text{ ends with an } a \text{ or has an } a \text{ followed} \\ \text{immediately by a } c. \end{array} \right\}$

Closure under Complement

Let $B \subseteq \Sigma^*$ be a regular language.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that recognizes B.

Let $M' = (Q, \Sigma, \delta, q_0, \overline{F})$. M' recognizes \overline{B} .

Proof: let $s \in \Sigma^*$ be a string.

- If $s \in B$, then $\delta(q_0, s) \in F$. Thus, $\delta(q_0, s) \notin \overline{F}$. Thus $s \notin L(M')$.
- If $s \notin B$, then $\delta(q_0, s) \notin F$. Thus, $\delta(q_0, s) \in \overline{F}$. Thus $s \in L(M')$.

 \overline{B} is recognized by a DFA; therefore, \overline{B} is regular.

Closure under Intersection

- Let $B_1, B_2 \subseteq \Sigma^*$ be regular languages.
- Let $M_1 = (Q_1, \Sigma, \delta_1, q_{1,0}, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_{2,0}, F_2)$ be DFAs that recognize B_1 and B_2 respectively.
- Let $M^{\cap} = (Q_1 \times Q_2, \Sigma, \delta, q_0, F_1 \times F_2)$ where

$$q_0 = (q_{1,0}, q_{2,0})$$

$$\delta((q_1, q_2), c) = (\delta_1(q_1, c), \delta_2(q_2, c))$$

for any $q_1 \in Q_1$, $q_2 \in Q_2$ and $c \in \Sigma$. M^{\cap} recognizes $B^1 \cap B^2$. Proof on next slide.

Proof that $L(M^{\cap}) = B_1 \cap B_2$

Let $s \in \Sigma^*$ be a string.

First, we note that for any string $s \in \Sigma^*$, $\delta((q_1, q_2), s) = (\delta(q_1, s), \delta(q_2, s))$. This can be proven by induction (see slide 15).

If $s \in B_1 \cap B_1$, then $s \in B_1$ and $s \in B_2$. Thus, $\delta_1(q_{0,1}, s) \in F_1$ and $\delta_2(q_{0,2}, s) \in F_2$. Thus,

$$\begin{split} \delta(q_0, s) &= \delta((q_{0,1}, q_{0,2}), s), & \text{def. } q_0 \\ &= (\delta_1(q_{0,1}, s), \delta_2(q_{0,2}), s)), & \text{def. } \delta \\ &\in F_1 \times F_2, & (s \in B_1) \Rightarrow \delta_1(q_{0,1}, s) \in F_1 \\ &\quad (s \in B_2) \Rightarrow \delta_1(q_{0,2}, s) \in F_2 \\ \therefore s &= L(M^{\cap}) \end{split}$$

If $s \notin B_1$, then ...

Proof that $L(M^{\cap}) = B_1 \cap B_2$

Let $s \in \Sigma^*$ be a string.

First, we note that for any string $s \in \Sigma^*$, $\delta((q_1, q_2), s) = (\delta(q_1, s), \delta(q_2, s))$. This can be proven by induction (see slide 15).

If $s \in B_1 \cap B_1$, then $s \in B_1$ and $s \in B_2$. Thus, $\delta_1(q_{0,1}, s) \in F_1$ and $\delta_2(q_{0,2}, s) \in F_2$. Thus, $s \in L(M^{\cap})$.

- If $s \notin B_1$, then $\delta(q_0, s) = (q_1, q_2)$ with $q_1 \notin F_1$ just work out $\delta(q_0, s)$ as above. Thus, $(q_1, q_2) \notin F_1$ and $s \notin L(M^{\cap})$.
- If $s \notin B_2$, then $s \notin L(M^{\cap})$ by an argument equivalent to the one for $s \notin B_1$. Thus, $\delta(q_0, s) \in \overline{F}$. Thus $s \in L(M')$.
- $\therefore s \in L(M^{\cap} \text{ iff } s \in B_1 \cap B_2.$

Closure under Intersection (cont.)

- Let $B_1, B_2 \subseteq \Sigma^*$ be a regular language.
- Let $M_1 = (Q_1, \Sigma, \delta_1, q_{1,0}, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_{2,0}, F_2)$ be DFAs that recognize B_1 and B_2 respectively.
- Let $M^{\cap} = (Q_1 \times Q_2, \Sigma, \delta, q_0 F_1 \times F_2)$ where

$$q_0 = (q_{1,0}, q_{2,0})$$

$$\delta((q_1, q_2), c) = (\delta_1(q_1, c), \delta_2(q_2, c))$$

for any $q_1 \in Q_1$, $q_2 \in Q_2$ and $c \in \Sigma$. M^{\cap} recognizes $B^1 \cap B^2$.

• $B_1 \cap B_2$ is recognized by a DFA; therefore, \overline{B} is regular.

Note: M^{\cap} is called a product machine because of the use of cartesian cross-product to define the set of states.

Intersection Example

This week

Reading:

September 10 (Today): Sipser 1.1 (continued).

Lecture will cover the rest of the section (i.e. pages 40–47).

September 12 (Friday): Sipser 1.2.

Lecture will cover through Example 1.35 (i.e. pages 47–52).

Homework:

September 12 (Friday): Homework 0 due. Homework 1 goes out (due Sept. 19).

Proof that $\delta((q_1, q_2), s) = ...$

By induction on *s*:

case $s = \epsilon$:

$$\begin{split} &\delta((q_1, q_2), \epsilon) \\ &= (q_1, q_2), & \text{def. } \delta \text{ for strings} \\ &= (\delta_1(q_1, \epsilon)\delta_2(q_2, \epsilon)), & " & \checkmark \end{split}$$

case $s = x \cdot c$:

$$\begin{split} \delta((q_1, q_2), x \cdot c) &= \delta(\delta((q_1, q_2), x), c), & \text{def. } \delta \text{ for strings} \\ &= \delta((\delta_1(q_1, x), \delta_2(q_2, x)), c) & \text{ind. hyp.} \\ &= (\delta_1(\delta_1(q_1, x), c), \delta_2(\delta_2(q_2, x), c)) & \text{def. } \delta \\ &= (\delta_1(q_1, s), \delta_2(q_2, s)), & \text{def. } \delta_1, \delta_2 \text{ for strings} \checkmark \end{split}$$