
Inductions and Strings
Mark Greenstreet, CpSc 421, Term 1, 2008/09

5 September 2008 – p.1/28

Lecture Outline
Mathematical background for the “Theory of Computing”

v Induction

v Strings

v An Example

5 September 2008 – p.2/28

Axioms for the Natural Numbers
Axiom 0: 0 is a natural number.

Axiom 1: if x is a natural number, so is succ(x)

Axiom 2: if x is a natural number, succ(x) > x.

Axiom 3: if x and y are natural numbers and x > y, then succ(x) > y.

Axiom 4: if x and y are natural numbers and x > y, then x 6= y.

We write N to denote the set of natural numbers.

5 September 2008 – p.3/28

Operations on the Natural Numbers
v Addition:

x + 0 = x,

x + succ(y) = succ(x + y).

v Multiplication:

x ∗ 0 = 0,

x ∗ succ(y) = (x ∗ y) + x.

5 September 2008 – p.4/28

Two More Operations
v Division:

(x/y) = q ⇔ y ∗ q = x.

v Exponentiation:

x0 = succ(0),

xsucc(y) = (xy) ∗ x.

5 September 2008 – p.5/28

Abbreviations
v Decimal digits:

1 = succ(0), 2 = succ(1), 3 = succ(2), 4 = succ(3),

5 = succ(4), 6 = succ(5), 7 = succ(6), 8 = succ(7),

9 = succ(8), 10 = succ(9).

v Multidigit numbers:

succ(succ(succ(...(succ(0))...)))
+ 4*10 + 3*10 + 7*102 1 031*10

1437 ‘‘succ(’’s 1437 ‘‘)’’s

0 is the primitive element for the naturals.

=
1437 =

5 September 2008 – p.6/28

Lazy Proofs

To prove: For all natural numbers, n,
n
∑

k=0

k =
n2 + n

2
.

Strategy:
v Wait for you to propose a particular m.

v Ask you to prove that m is a natural number. You’ll have to me you
that

m = succ(succ(succ(. . . succ(0) . . .))).

v I’ll Prove that the formula holds for m = 0.

v For each succ in the formula for m, I’ll show that the formula for the
sum holds.

5 September 2008 – p.7/28

Visualize Laziness
then, I’ll show you:If you show me:

m = succ(
succ(

succ(proof for m = succ(... succ(succ(succ(0)))...)

proof for m = succ(succ(... succ(succ(succ(0)))...))
proof for m = succ(succ(succ(... succ(succ(succ(0)))...)))

succ(

succ(
succ(

0)))...))) proof for m = 0

proof for m = succ(0)

proof for m = succ(succ(0))

proof for m = succ(succ(succ(0)))

5 September 2008 – p.8/28

Proof for m = 0
v
∑0

k=0 k = 0.

v 02 + 0

2
=

02

2
, def. +

= 0succ(succ(0))

2 , def. 2

= (0∗0)∗0
2 , def. exponentiation

= 0
2 , def. multiplication

= 0, 2 ∗ 0 = 0, def. division

v
�

5 September 2008 – p.9/28

Proof for succ(m)

succ(m)2 + succ(m)

2
= (m+1)2+(m+1)

2 , m + 1 = succ(m)

= (m2+2∗m+1)+(m+1)
2 , algebra

= (m2+m)+2∗(m+1)
2 , more algebra

= m2+m
2 + 2∗(m+1)

2 , more algebra

= m2+m
2 + (m + 1), def. division

=

(

m
∑

k=0

k

)

+ (m + 1), already shown:

m
∑

k=0

k =
k2 + k

2

=

succ(m)
∑

k=0

k, def. summation

5 September 2008 – p.10/28

Inductive Definitions
v Induction applies when the domain of interest is defined inductively.

v An inductive definition consists of a collection cases:
v Primitive elements. We can write these cases as:

s0 ∈ S

For example, 0 ∈ N.
v Inductive cases that build larger elements from smaller ones. We can write:

∀s1, s2, . . . sk ∈ S. C(s1, s2, . . . sk) ∈ S

For example, ∀x ∈ N. succ(x) ∈ N.

5 September 2008 – p.11/28

Proof by Induction
If S is a set that is defined inductively, and P : S → {0, 1} is
a predicate over elements of S, then we can prove that P

holds for all elements of S by showing
v For each primitive element, s0, of S show that P (s0) is true.

v For each inductive case, show that for any non-primitive element of
s, you can find s1, s2, . . . sk such that s = C(s1, s2, . . . sk), and that

(P (s1) ∧ P (s2) ∧ . . . ∧ P (sk)) ⇒ P (s)

5 September 2008 – p.12/28

Strong Induction
v Let S be the set such that x ∈ S iff

v x = 0, or
v x = 1, or

v there are y and z in S such that x = y + z.

It is straightforward to show that S = N, the natural numbers as
defined on slide 3.

v Proof by strong induction.
To prove that P (n) holds for all natural number, n, show:

v P (0), and
v P (1), and

v for any natural number x > 1, we can find natural numbers y < x and z < x

such that x = y + z, and (P (y) ∧ P (z)) =⇒ P (x).

v There are many more ways we could generate the integers, and
each leads to its own template for induction proofs.

5 September 2008 – p.13/28

Strings
Let Σ be a finite set of “symbols”.

v Informal definition: a string is a sequence of zero or more elements
from Σ.

v Inductive definition: s ∈ Σ∗ iff
v s = ǫ, the empty string.

v There is a w ∈ Σ∗ and a c ∈ Σ such that s = w · c.

v Note: The operator · represents concatenation, and we often omit
writing it, just like skipping the ∗ for multiplication.

5 September 2008 – p.14/28

Operations on Strings:
v String concatenation:

x · ǫ = x

x · (y · c) = (x · y) · c

v Length:

length(ǫ) = 0

length(w · c) = length(w) + 1

We write |w| as a shorthand for length(w).

v Equality:

x = y ↔ (x = ǫ) ∧ (y = ǫ)

∨ (x = u · c) ∧ (y = v · d) ∧ (u = v) ∧ (c = d)

5 September 2008 – p.15/28

One More Operation:
v Ordering:

x < y ↔ length(x) < length(y)

∨ (length(x) = length(y)) ∧ (x = c · u)

∧ (y = d · v) ∧ (c < d)

∨ (length(x) = length(y)) ∧ (x = c · u)

∧ (y = c · v) ∧ (u < v)

Note that “zymurgy” < “aardvark” by this ordering.

5 September 2008 – p.16/28

Putting it all together
v Let Σ = {0,1}.

v Let S ⊆ Σ∗, such that w is in S iff
v w = ǫ; or
v There is a string x in S such that w = 0x1 or w = 1x0; or

v There are strings x and y in S with x 6= ǫ and y 6= ǫ such that w = xy.

v Prove that w is in S iff the number of O’s in w is equal to the number
of 1’s.

5 September 2008 – p.17/28

Proof strategy
v First show that if w ∈ S, then w has an equal number of 0’s and 1’s.

v Next, show that if w has an equal number of 0’s and 1’s, then
w ∈ S.

5 September 2008 – p.18/28

Proof strategy
v First show that if w ∈ S, then w has an equal number of 0’s and 1’s.

v Here, we consider each of the three rules for a string being in S.
v We will show that each rule produces a string with an equal number of 0’s and

1’s.

v This is a proof by induction according to the inductive definition of S.

v Next, show that if w has an equal number of 0’s and 1’s, then
w ∈ S.

5 September 2008 – p.18/28

(w ∈ S) ⇒ (#0(w) = #1(w))
Let w be an arbitrary element of S. Appling induction over
the definition of S we get:

v case w = ǫ: #0(w) = #1(w) = 0. X

v case ∃x ∈ S.(w = 0x1) ∨ (w = 1x0):

1. Because x ∈ S, the induction hypothesis holds for x and #0(x) = #1(x).

2. If w = 0x1, then #0(w) = #0(x) + 1, and #1(w) = #1(x) + 1.

3. From (1) and (2), #1(w) = #0(w). X

v case ∃x, y ∈ S.w = xy:

#0(w) = #0(x) + #0(y), w = xy

= #1(x) + #1(y), x, y ∈ S, |x| < |w|, |y| < |w|, ind. hyp.

= #1(w), w = xy X

5 September 2008 – p.19/28

Proof strategy (revisited)
v We have just shown that if w ∈ S, then w has an equal number of
0’s and 1’s.

v We will now show that if w has an equal number of 0’s and 1’s.
then w ∈ S.

v The basic idea is that for any string with an equal number of we’ll find a way to
apply the rules defining S to show that it is in S.

v We consider the empty string and then strings of the form u · c. Thus, this is an
inductive proof according to the definition of strings.

v The tricky part is that if w = u · c has an equal number of 0’s and 1’s, then u

definitely does not!

To handle this, we’ll introduce a function that keeps track of the difference

between the number of 0’s and 1’s.

5 September 2008 – p.20/28

(w ∈ S) ⇐ (#0(w) = #1(w))
v case w = ǫ: w ∈ S by the first rule in the definition of S. X

v case w = v · c for some c ∈ Σ:

1. Assume c = 0 (the other case is equivalent).

2. By definition #0(w) = #0(v) + 1 ≥ 1, and #1(w) = #1(v).

3. By the assumption that #0(w) = #1(w), we get #1(v) ≥ 1, and thus |v| ≥ 1.

4. Let v = d · u for some d ∈ Σ.

5. If d = 1, then
a. w = 1 · u · 0; #0(u) = #0(w) − 1; and #1(u) = #1(w) − 1.
b. Thus, u ∈ S by the induction hypothesis.
c. w ∈ S by the second rule in the definition of S. X

6. If d = 0, then we go to the next slide

5 September 2008 – p.21/28

Defining f

f(ǫ) = 0

f(s · 0) = f(s) − 1

f(s · 1) = f(s) + 1

Observations about f :
v #0(w) = #1(w) iff f(w) = 0.

v f(xy) = f(x) + f(y).

v If f(s) > 0 then for all k ∈ [0 . . . f(s)], s can be divided into two strings, x, and y,
such that s = xy and f(x) = k.

v If f(s) < 0 then for all k ∈ [f(s) . . . 0], s can be divided into two strings, x, and y,

such that s = xy and f(x) = k.

5 September 2008 – p.22/28

(w ∈ S) ⇐ (#0(w) = #1(w)) (cont.)
6. If d = 0, then w = 0 · u · 0.

a. f(w) = 0, because #0(w) = #1(w).

b. f(u) = 2, because (−1) + f(u) + (−1) = 0.

c. From the third observation on the previous slide, we conclude
there are strings x and y such that u = xy and f(x) = 1.

d. By the construction x and y, we conclude
w = 0 · x · y · 0.

e. From the second observation on the previous slide, we conclude
f(0 · x) = 0 ,and f(y · 0) = 0.

f. From the first observation on the previous slide, we conclude
#0(0x) = #1(0x) ,and #0(y0) = #1(y0).

g. The induction hypothesis yields:
0 · x ∈ S, and y · 0 ∈ S.

h. The third rule in the definition of S yields: (0 · x) · (y · 0) ∈ S.

i. Thus, w ∈ S (see step d). X

5 September 2008 – p.23/28

Tuple-Terror
In this class, we will often get definitions along the lines of:

A finite automaton is a 5-tuple (Q,Σ, δ, q0, F),
where
1. Q is a finite set called the states.
2. . . .
(From Sipser , Def. 1.5, p. 35)

“Tuples” are the mathematicians way of describing things

that resemble what programmers call “data structures.”

5 September 2008 – p.24/28

Type and Sets
v Programming language types correspond to sets.

v The java type boolean corresponds to the set {true, false}. A
variable of type boolean can have either value from this set.

v A Java int corresponds to the set [−231, . . . 231 − 1]. A variable of
type int can have any value from this set.

v A Java class corresponds to the set that is the cross-product of the
sets for each of its fields (see note on slide 27). Let’s do an
example to see how this works.

5 September 2008 – p.25/28

class CourseSection (java version)
class CourseSection {

String instructor; // who teaches the class
Set<int> students; // who is taking the class (student #s)
Department d; // the department offering this course
int courseNum; // the course number
int sectionNum; // the section number

. . . // constructors, methods, etc.
}

5 September 2008 – p.26/28

class CourseSection (tuple version)
In Sipser , a course section would be describe as:

A course section is a 5-tuple (I, S, d, c, x) where
1. I ∈ Σ∗ is the instructor of the course.
2. S is a set of integers, the student numbers of the

students in the course.
3. . . .

Notes:
v a tuple is an element of the set that is formed by the cross-product of the sets

for each of its elements. This means that you can put a tuple together by
choosing any value you like for each element from the corresponding set.

v In Java (and other programming languages), we’ll often restrict this. The

constructor for a class may insure that some relationship holds for the members

of the class, and all methods of the class may preserve this relationship. These

are the data invariants that you’ve seen (I assume) in earlier classes, but we

won’t go further into that (at least not now).

5 September 2008 – p.27/28

The coming week
Reading:

September 8 (Monday): Sipser 1.1.
Lecture will cover through Example 1.15 (i.e. pages 31–40).

September 10 (Wednesday): Sipser 1.1 (continued).
Lecture will cover the rest of the section (i.e. pages 40–47).

September 12 (Friday): Sipser 1.2.
Lecture will cover through Example 1.35 (i.e. pages 47–52).

Homework:
September 5 (today): Homework 0 goes out (due Sept. 12).

September 12 (Friday): Homework 0 due. Homework 1 goes out (due Sept. 19).

Have a good weekend!

5 September 2008 – p.28/28

	Lecture Outline
	Axioms for the Natural Numbers
	Operations on the Natural Numbers
	Two More Operations
	Abbreviations
	Lazy Proofs
	Visualize Laziness
	Proof for $m=0$
	Proof for $scc (m)$
	Inductive Definitions
	Proof by Induction
	Strong Induction
	Strings
	Operations on Strings:
	One More Operation:
	Putting it all together
	Proof strategy
	$(w in S)
Rightarrow (#0(w) = #1(w))$
	Proof strategy (revisited)
	$(w in S)
Leftarrow (#0(w) = #1(w))$
	Defining f
	$(w in S)
Leftarrow (#0(w) = #1(w))$
ule {1em}{0ex}{cblack (cont.)}
	Tuple-Terror
	Type and Sets
	class CourseSection (java version)
	class CourseSection (tuple version)
	The coming week

