
Introduction to the Theory of
Computing

Mark Greenstreet, CpSc 421, Term 1, 2008/09

3 September 2008 – p.1/24



Lecture Outline
v Course Overview

v Languages

v Models of Computation

3 September 2008 – p.2/24



Schedule
Sept. 3 – 26: Regular languages and finite automata.

Sept. 29 – Oct. 17: Context-free languages and pushdown automata.

Oct. 8: Midterm 1

Oct. 20 – Nov. 14: Turing machines and decidability.

Nov. 5: Midterm 2

Nov. 17 – 28: To be determined.
Possible topics include:
cryptography, NP completeness, proving software correct, quantum computation,
molecular computation, catching up because some topics took longer than I
planned, . . .

3 September 2008 – p.3/24



Contact Info
v Instructor: Mark Greenstreet

mrg@cs.ubc.ca, CICSR/CS 323
Office hours: Monday 9-10am, Thursday 10-11am.

v TA: Brad Bingham
binghamb@cs.ubc.ca, CICSR/CS 342
Office hours: Let’s vote!

v Course web-page: http://www.ugrad.cs.ubc.ca/ cs421.

v Course newsgroup: ubc.courses.cpsc.421

Read it. Post questions. Claim bug-bounties!

3 September 2008 – p.4/24



Grading
Homework: 25%

One assignment per week.

Midterms: 30%
Two midterms, see schedule on slide 3.

Final: 45%

3 September 2008 – p.5/24



Plagiarism
Submitting the work of another person, whether that be
another student, something from a book, or something off
the web and representing it as your own is plagiarism and
constitutes academic misconduct.

If the source is clearly cited, then it is not academic mis-

conduct.

3 September 2008 – p.6/24



Bug Bounties
If I make a mistake, you get extra credit.

v If you find an error in a homework assignment or the lecture notes,
post it to the course newsgroup.

v The first person to post the bug gets the bounty.

v If the error would prevent you from solving the problem, you get
extra credit equal to the value of the problem.

v If it is a more minor error (or an error in the notes), I’ll determine the
number of extra credit points according to my sense of the severity
of the error.

3 September 2008 – p.7/24



Lecture Outline
v Course Overview

v Languages
v Human Languages
v Programming Languages

v Formal Languages

v Models of Computation

3 September 2008 – p.8/24



Human Languages
English, French, Danish, Hungarian, Urdu, Cantonese, . . .

Which sentences below are true, meaningful, grammatical?
v vgrlum qp#d*n aoiuiui brubrubrubru 3jc6r
v dog homework ate my. My
v Erpa shumblers groffed dulky brubrus.
v Iron is denser than styrofoam.
v The textbook for this class has exactly ten pages.
v Two is less than three.
v The loneliness sat for cast iron subtraction.

v George W. Bush is smarter than a dead slug.

3 September 2008 – p.9/24



Programming Languages
C, Java, Python, Prolog, Pascal, . . .

When is a program:
v syntactically correct?
v compilable?
v free from fatal exceptions at runtime?
v free from deadlock or infinite loops?
v a correct implementation of its specification?

3 September 2008 – p.10/24



Formal Languages
v An alphabet, Σ, is a finite set of symbols, e.g. {♣, †,⊕,∇}.

v A string is a sequence of zero or more symbols from Σ, e.g. ♣⊕⊕

or † † †.

v We’ll write ǫ to denote the empty string (the string consisting of zero
characters).

v We’ll write Σ
∗ to denote all strings consisting of symbols from Σ.

v A language, L, is a subset of Σ
∗.

3 September 2008 – p.11/24



Formal Language, example
v let Σ = {a,b,∧,∨,¬,(,)}.

v We could define L0 to be the set of all strings that represent
syntactically correct boolean formulas.

v We could define L1 to be the set of all strings that represent
boolean tautologies.

v Example strings:
a ∧ b is in L0 but not L1.

a ∨ ¬a is in L0 and L1.

(a ∨ b ∨ (¬a ∧ ¬b)) is in L0 and L1.

(a ∨ ∧ b is not in L0 and not in L1.

v We can write a computer program that determines whether or not
an arbitrary string is in L0 or in L1.

3 September 2008 – p.12/24



Lecture Outline
v Course Overview

v Languages

v Models of Computation
v Logic gates
v Finite automata
v Push-down automata

v Turing machines

3 September 2008 – p.13/24



Logic Gates

in2 out

in1

v “Language” is set of all inputs that produce a true output value.

v Any circuit only accepts fixed number of bits for input – not a true
language in the sense described above.

v Note that two-input NAND gates are universal for logic circuits. Any
boolean function can be constructed using only two-input NAND
gates.

3 September 2008 – p.14/24



Finite Automata

Initially: out = 0

D Q outin

v Logic gates plus a fixed number of bits of storage.

v Can process an arbitrarily long strings.
The example circuit accepts all strings with an odd number of ones.

v The languages that can be recognized by finite automata are very
restricted.

v For example, finite automaton can’t recognize inputs that have more 1’s than

0’s or mathematical formulas where the parentheses balance properly.

3 September 2008 – p.15/24



Finite Automata

Initially: out = 0

D Q outin

v Logic gates plus a fixed number of bits of storage.

v Can process an arbitrarily long strings.
The example circuit accepts all strings with an odd number of ones.

v The languages that can be recognized by finite automata are very
restricted.

v For example, finite automaton can’t recognize inputs that have more 1’s than
0’s or mathematical formulas where the parentheses balance properly.

v Intuitvely, this is because a machine with a fixed number, k, bits of storage can

only count to 2k. After reading 2k + 1 1’s, the machine must be in a state that it

was in before. 3 September 2008 – p.15/24



Push-Down Automaton

Stack

in
automaton

finite out

Unbounded

v A finite automaton with an unbounded stack.

v Can recognize properly balanced parantheses and other
languages with nesting structures.

v Most programming languages have syntaxes with this kind of
nesting structure.

v More general than finite automata, but still limited.
v Cannot recognize the language of all strings whose lengths are prime numbers.

3 September 2008 – p.16/24



Push-Down Automaton
Stack

in
automaton

finite out

Unbounded

v A finite automaton with an unbounded stack.

v Can recognize properly balanced parantheses and other
languages with nesting structures.

v Most programming languages have syntaxes with this kind of
nesting structure.

v More general than finite automata, but still limited.
v Cannot recognize the language of all strings whose lengths are prime numbers.

v Intuitvely, a machine with a stack can only recognize lanuages with tree-like

syntaxes, and we can “graft” copies of a subtree into an existing tree. If a

language doesn’t have subtrees like this, then it can’t be recognized by a

pushdown automaton. 3 September 2008 – p.16/24



Turing Machines

YES
in

automaton
finite

head
tape

...w h a t i s t h e a n s w e r t o t h e q u e s t i o ntape

NO

v A finite automaton with an unbounded read/write tape.

v Can recognize any language that is recognizable by ANY computer!

v Yet, there are problems that a Turing machine cannot solve.

3 September 2008 – p.17/24



The Halting Problem
v Let halt(p, in) be a function that is true iff program p halts when run with input

in.

v Note that both p and in can be strings.
If # is a symbol that cannot be in p or in, we can write both as a single string: p#in.

v The set of all strings p#in such that program p halts when run with input in is a
language, HALT.

v If there were a Turing machine that recognizes HALT, we could call such a machine
MHALT .

v We could now build a Turing machine, MX that when run on input string s:
v Creates string s#s.
v Runs MHalt on s#s.
v If MHalt recognizes s#s

then MX goes into an infinite loop.
else MX halts.

v What happens if we run MX with a string describing MX as its input?

3 September 2008 – p.18/24



The Halting Problem (cont.)

HALT

%M #%MXX
YES

NO

loop

YES
XM

%MX

M

v If MHALT accepts %MX#%MX ,
v That means that MX will halt when run with its own description, %MX as input.
v But, MX will go into an infinite loop if MHALT accepts.

v If MHALT rejects %MX#%MX ,
v That means that MX will run forever when run with its own description, %MX

as input.
v But, MX will go exit immediately loop if MHALT rejects.

v MHALT cannot give a correct answer.

v Note that MX was constructed using a proposed MHALT . We get a different MX

for each proposed solution, MHALT , but this shows that no solution to the halting

problem exists.
3 September 2008 – p.19/24



What’s the “Theory of Computing”?
Here’s the kinds of questions we consider:

v 1. What problems are possible/impossible to solve with a
computer?

v 2. What problems are easy/hard to solve with a computer?

v 3. What is a computer?

v 4. Do do the answers to 1 and 2 depend on the answer to 3?

3 September 2008 – p.20/24



What is a computer?
v Finite state machines:

A fixed amount of memory.

v Pushdown automata:
An infinite amount of memory, arranged as a stack.

v Turing machines:
An infinite amount of memory, arranged as a tape with a “head”
that can read, write, and move left or right.
A Turing machine is very simple but can perform any computation
that a conventional comptuter can do. In fact, we don’t know of
anything that can compute something that a Turing machine
cannot.

3 September 2008 – p.21/24



Connections

Protocols

Finite State Machines

Hardware Software

Analysis
Lexical

Languages
Programming

Matching
Pattern

wildcards
Filenames w.

emacs, awk, ...
Perl, sed, vi

User
Interfaces

General
Software

Software
Structuring

Verification
(Model Checking)

Network

3 September 2008 – p.22/24



Connections

Languages

Natural
Language
Processing

Decidability Universality

Pushdown Automata Turing Machines

Languages
Programming

Specification
Syntax

Generation
Parser Virus

Detection
Formal

Mathematics
Computer

Architecture

Program
Verification

Programming

3 September 2008 – p.23/24



Summary
v You’ve now seen everything in this course:

v Finite Automata, regular languages, and their limitations,
v Push-Down Automata, context-free languages, and their limitations,

v Turing machines, general languages, and their limitations

v What’s left to cover:
v Go over the material at a reasonable pace so everyone can understand it.
v Make it mathematically precise.

v Look at practical implications and applications.

3 September 2008 – p.24/24


	Lecture Outline
	Schedule
	Contact Info
	Grading
	Plagiarism
	Bug Bounties
	Lecture Outline
	Human Languages
	Programming Languages
	Formal Languages
	Formal Language, example
	Lecture Outline
	Logic Gates
	Finite Automata
	Push-Down Automaton
	Turing Machines
	The Halting Problem
	The Halting Problem (cont.)
	What's the ``Theory of Computing''?
	What is a computer?
	Connections
	Connections
	Summary

