Attempt any three of the six problems below. The homework is graded on a scale of 100 points, even though you can attempt fewer or more points than that. Your recorded grade will be the total score on the problems that you attempt.

1. ($\mathbf{3 0}$ points) For each language below, determine whether or not it is Turing decidable. If it is Turing decidable, describe a Turing machine that decides it. If it is not decidable, show this using a reduction from a problem shown to be undecidable in Sipser, from lectures. or earlier homework or midterm 2.
(a) (10 points) $\{M \mid M$ describes a TM that halts when run with the empty string for input. $\}$
(b) (10 points) $\{M \mid M$ describes a TM with exactly 42 states. $\}$
(c) (10 points) $\{M \mid M$ describes a TM that accepts exactly 42 strings. $\}$
2. ($\mathbf{3 0}$ points) Same instructions as for problem 1.
(a) (10 points) $\{M \mid M$ describes a TM that decides the halting problem. $\}$
(b) ($\mathbf{1 0}$ points) $\{M \mid M$ never writes the symbol 0 on two consecutive moves. $\}$
(c) (10 points) $\{M \mid M$ describes a TM that decides every string, w, after at most $\sqrt{|w|}+12$ moves. $\}$
3. (35 points, Sipser problems 5.22, 5.23 and 24)
(a) (10 points) Show that A is Turing-recognizable iff $A \leq_{m} A_{T M}$.
(b) ($\mathbf{1 0}$ points) Show that A is Turing-decidable iff $A \leq_{m} 0^{*} 1^{*}$.
(c) (15 points) Let $J=\left\{w \mid\right.$ either $w=0 x$ for some $x \in A_{T M}$ or $w=1 y$ for some $\left.y \notin A_{T M}\right\}$. Show that neither J nor \bar{J} is Turing-recognizable.
4. (40 points, Rice's Theorem: from Sipser problem 5.29)

Rice's Theorem (see Sipser problem 5.28): Let

$$
A=\{M \mid M \text { describes a TM such that } p(M) .\}
$$

Where p satisifies the following two properties:
(1) p is non-trivial: there is at least one TM, M_{1}, such that $p\left(M_{1}\right)$ is true and at least one TM, M_{2}, such that $p\left(M_{2}\right)$ is false.
(2) p is a property of the language recognized by M.

Then, A is not Turing decidable.
Sipser gives a proof for this theorem in the solution to problem 5.28.
(a) (20 points, Sipser problem 5.29) Sipser's proof shows that the two conditions stated above for p are sufficient to prove that A is not Turing decidable. Show that both conditions are also necessary.
(b) (10 points) Use Rice's theorem to prove that

$$
B=\{M \mid \text { Every string accepted by } M \text { has and equal number of a's and b's. }\}
$$

is not Turing decidable.
(c) (10 points) Use Rice's theorem to prove that

$$
C=\{M \mid M \text { recognizes a context-free language. }\}
$$

is not Turing decidable.
5. (45 points) Let

$$
E=\left\{M_{1} \# M_{2} \mid M_{1} \text { and } M_{2} \text { describe TMs such that } L\left(M_{1}\right)=L\left(M_{2}\right) .\right\}
$$

Prove that E is complete for class Π_{2} of the arithmetic hierarchy (see the Nov. 7 slides). This means that there is a Turing computable reduction from any language in Π_{2} to E, and a Turing computable reduction from E to some language in Π_{2}. You may use the fact that TOTAL is complete for Π_{2}, where

$$
\text { TOTAL }=\{M \mid M \text { is a decider. }\}
$$

6. (50 points, adapted from Kozen) Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a TM that never overwrites its input. Formally,
```
ImmutableInput \(\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)\)
    \(=\forall q, q^{\prime} \in Q . \forall c, c^{\prime} \in \Gamma . \forall d \in\{L, R\} .\left(\left(\delta(q, c)=\left(q^{\prime}, c^{\prime}, d\right)\right) \wedge(c \in \Sigma)\right) \Rightarrow\left(c=c^{\prime}\right)\)
```

M can write anything it wants on the portion of the tape that is initially blank.
(a) (30 points) Prove that for any M with ImmutableInput $(M), L(M)$ is regular.
(b) (10 points) Show that the language

$$
F_{1}=\{M \mid \text { ImmutableInput }(M)\}
$$

is Turing decidable.
(c) (10 points) Show that the language

$$
F_{2}=\{M \# w \mid \text { ImmutableInput }(M) \wedge(w \in L(M)\}
$$

is not Turing decidable.

