
CpSc 421 Homework 9 Solution

Attempt any three of the six problems below. The homework is graded on a scale of 100 points, even though you can
attempt fewer or more points than that. Your recorded grade will be the total score on the problems that you attempt.

1. (30 points) For each language below, determine whether or not it is Turing decidable. If it is Turing decidable,
describe a Turing machine that decides it. If it is not decidable, show this using a reduction from a problem
shown to be undecidable in Sipser, from lectures. or earlier homework or midterm 2.

(a) (10 points) {M | M describes a TM that halts when run with the empty string for input. }
Solution: Let Aε denote the language for this problem. I’ll reduce ATM to Aε. Construct a TM MATM

does the following when run with input M#w:
Step 1. (MATM ): Compute the description of a TM, M ′ that does the following when run with input

s:
Step 1. (M ′): Erase it’s input tape (i.e. overwrite every symbol in s with a blank.
Step 2. (M ′): Write w on its tape.
Step 3. (M ′): Run M on input w.

Step 2.a. (M ′): If M accepts w, M accepts.
Step 2.b. (M ′): If M rejects w, M rejects.
Step 2.c. (M ′): If M loops on w, M loops.

Step 2. (MATM ): Check if M ′ ∈ Aε (i.e. run a decider for Aε on the description of M ′):
Step 2.a. (MATM ): If M ′ ∈ Aε, then M accepts M#w.
Step 2.b. (MATM ): If M ′ 6∈ Aε, then M rejects M#w.

Thus, we’ve reduced deciding whether or not M accepts w to whether or not M ′ accepts the empty
string, and our construction works for any M and w. This shows that ATM ≤m Aε; therefore X is
undecidable (because we have already shown that ATM is undecidable).

(b) (10 points) {M | M describes a TM with exactly 42 states. }
Solution: Let A42−states denote the language described above. A42−states is Turing decidable. We can

construct a TM, M42−states that reads the description of M . If M is not a valid description of a
TM, then M42−states rejects. Otherwise, M42−states simply checks the number of states in the the
description of M and accepts if there are 42 such states.
For example, the format for describing TMs that presented in the Oct. 27 lecture has the binary
encoding of the number of states of the machine as the first element of the description. Using this
this format, M42−states just needs to make sure that its input is a valid TM description and then
makes sure that this description starts with the substring:

101010,

(c) (10 points) {M | M describes a TM that accepts exactly 42 strings. }
Solution: Let A42−strings denote the language described above. A42−strings is Turing not decidable.

I’ll reduce ATM to Aε. For the same of contradiction, assume that there is a TM, M42−strings that
decides A42−strings . Construct a TM MATM does the following when run with input M#w:

Step 1. (MATM ): Compute the description of a TM, M ′ that does the following when run with input
s:

Step 1. (M ′): If s = w, run M on w.
Step 1.a. (M ′): If M accepts w, M accepts.
Step 1.b. (M ′): If M rejects w, M rejects.
Step 1.c. (M ′): If M loops on w, M loops.

Step 2. (M ′): If s ∈ {w + 1, . . . w + 41} accept. Here, w + 1 is the lexigraphical successor to
w (i.e. the first string, in lexigraphical ordering, that is greater than w).
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Step 3. (M ′): Otherwise, reject.
Step 2. (MATM ): Check if M ′ ∈ A42−strings (i.e. run Mε on the description of M ′):

Step 2.a. (MATM ): If M ′ ∈ Aε, then M accepts M#w.
Step 2.b. (MATM ): If M ′ 6∈ Aε, then M rejects M#w.

Thus, we’ve reduced deciding whether or not M accepts w to whether or not M ′ accepts the empty
string, and our construction works for any M and w. This shows that ATM ≤m Aε; therefore X is
undecidable (because we have already shown that ATM is undecidable).

2. (30 points) Same instructions as for problem 1.

(a) (10 points) {M | M describes a TM that decides the halting problem. }
Solution: Let Adecides−HALT denote the language described above. There are no TMs that decide the

halting problem. Thus, Adecides−HALT = ∅ and is decidable – just make a TM that transitions to its
reject state on its first move regardless of its input.

(b) (10 points) {M | M never writes the symbol 0 on two consecutive moves. }
Solution: Let A00 denote the language described above. I’ll reduce Aε (see my solution to question 1a to

A00. Let M describe a TM. If M has the symbol 0 in its tape alphabet, we create a new TM, M ′ that
is the same as M but with the symbol 0 replaced by a new symbol 0′ that is not in the tape alphabet
of M . If M does not have the symbol 0 in its tape alphabet, let M ′ = M . Now, we create a new
machine, M” that is like M ′ except for the following changes:
• Add the symbol 0 to the tape alphabet.
• Add a new state, q” to the set of states.
• Replace any transition to qaccept with a transition to q”.
• From state q” and for every tape symbol, M” writes a 0, moves right and remains in state q”.

In other words, if M ′ accepts, the M” writes an infinite strings of 0’s on its tape. Clearly, M” does
not write any zeros on its tape at any other time. Thus, M” writes two consecutive zeros iff M ′ (and
thus M ) accepts when run with the empty string. This reduce Aε to A00 as promised.

(c) (10 points) {M | M describes a TM that decides every string, w, after at most
√
|w|+ 12 moves. }

Solution (sketch): If M makes 17 or more moves, we can give it an input string that is too short to justify
the run-time. Thus, it is sufficient to show that M always halts after at most 16 moves, and this only
requirs looking at strings of length of up to 16.

3. (35 points, Sipser problems 5.22, 5.23 and 24)

(a) (10 points) Show that A is Turing-recognizable iff A ≤m ATM .

Solution (sketch): Follows directly from the definition of ATM .

(b) (10 points) Show that A is Turing-decidable iff A ≤m 0∗1∗.

Solution: If A is Turing decidable, then we can make a machine that when run with input w checks to see
if w ∈ A. If so, it erases its tape, and runs a decider for 0∗1∗ – because ε ∈ L(0∗1∗)∗, that machine
accepts. Conversely, if w 6∈ A, then it writes 10 on its tape and runs the decider for 0∗1∗.

(c) (15 points) Let J = {w | either w = 0x for some x ∈ ATM or w = 1y for some y 6∈ ATM }. Show that
neither J nor J is Turing-recognizable.

Solution: We can reduce ATM to J – to determine if w ∈ ATM , prepend a 0 to w and check if 0w ∈
J . ATM is not Turing reducible to ATM ; therefore, J cannot be reduced (by a Turing machine
computation) to ATM either which means that it is not Turing recognizable (see part (a)).
Likewise, we can reduce ATM to J by prepending a 0 to the input string which shows that J is not
Turing recognizable either.
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4. (40 points, Rice’s Theorem: from Sipser problem 5.29)

Rice’s Theorem (see Sipser problem 5.28): Let

A = {M | M describes a TM such that p(M). }

Where p satisifies the following two properties:

(1) p is non-trivial: there is at least one TM, M1, such that p(M1) is true and at least one TM, M2, such
that p(M2) is false.

(2) p is a property of the language recognized by M .

Then, A is not Turing decidable.

Sipser gives a proof for this theorem in the solution to problem 5.28.

(a) (20 points, Sipser problem 5.29) Sipser’s proof shows that the two conditions stated above for p are suffi-
cient to prove that A is not Turing decidable. Show that both conditions are also necessary.

Solution: If p is trivial, then either all TM descriptions are in the language (if p includes all TMs) or
the language is empty. In the former case, we just build a TM that makes sure that M is a valid TM
description and accepts. In the lattter case, we build a TM that rejects all strings (e.g. see the solution
to question 2a).
If p is a property of the machine rather than the language, it may be decidable. For example the
question of whether or not a TM has 42 states (see question 1b) is decidable.

(b) (10 points) Use Rice’s theorem to prove that

B = {M | Every string accepted by M has and equal number of a’s and b’s. }

is not Turing decidable.

Solution: B is a property of the language of a TM. Let M1 be a TM that rejects all strings: M1 ∈ B.
Let M2 be a TM that accepts all strings: M2 6∈ B. Thus, B is not trivial. By Rice’s theorem, B is
undecidable.

(c) (10 points) Use Rice’s theorem to prove that

C = {M | M recognizes a context-free language. }

is not Turing decidable.

Solution: C is a property of the language of a TM. Let M1 be a TM that rejects all strings: M1 ∈ C.
Let M2 be a TM that recognizes {s | ∃n. s = anbncn}; M2 6∈ C. Thus, C is not trivial. By Rice’s
theorem, C is undecidable.

5. (45 points) Let

E = {M1#M2 | M1 and M2 describe TMs such that L(M1) = L(M2). }

Prove that E is complete for class Π2 of the arithmetic hierarchy (see the Nov. 7 slides). This means that there
is a Turing computable reduction from any language in Π2 to E, and a Turing computable reduction from E to
some language in Π2. You may use the fact that TOTAL is complete for Π2, where

TOTAL = {M | M is a decider. }

Solution:
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TOTAL ≤M E: Let M be a description of a TM. Compute the description of a new TM, M ′ that is the
same as M except that all transitions that go to the reject state of M are changed to go to the accept
state of M ′. Note that M ′ accepts a string, w, iff M halts when run with input w. In other words, M ′

recognizes Σ∗ iff M ∈ TOTAL.
Let MΣ∗ be the description of a TM that recognizes Σ∗. Now we have:

M ′#MΣ∗ ∈ E ⇔ M ∈ TOTAL

Deriving M ′#MΣ∗ from M is a Turing computable function. Thus, we’ve shown TOTAL ≤M E
as claimed.

E ≤M TOTAL: Let M1#M2 be a string where M1 and M2 describe TMs. We will construct M ′, the
description of a TM that is in TOTAL iff L(M1) = L(M2).
Let s ∈ L(M1). This means that there is some integer, n1 such that accept(M1, s, n1) where
accept(M, s, n) means that the TM described by M accepts the string described by s after at most n
moves (see slide 15 of the Nov. 7 slides). If L(M1) = L(M2), then there must be some integer, n2

such that accept(M2, s, n2). We can write this with quantifiers as:

∀s ∈ Sigma∗. (∃n1 ∈ Z. accept(M1, s, n1)) ⇒ (∃n2 ∈ Z. accept(M1, s, n1))
≡ ∀s ∈ Sigma∗. ¬(∃n1 ∈ Z. accept(M1, s, n1)) ∨ (∃n2 ∈ Z. accept(M1, s, n1)), (p ⇒ q) ≡ (¬p ∨ q)

∀s ∈ Sigma∗. (∀n1 ∈ Z. ¬accept(M1, s, n1)) ∨ (∃n2 ∈ Z. accept(M1, s, n1)), De Morgan’s
∀s ∈ Sigma∗, n1 ∈ Z. ¬accept(M1, s, n1) ∨ (∃n2 ∈ Z. accept(M1, s, n1)), Combine like quantifiers

∀s ∈ Sigma∗, n1 ∈ Z. ∃n2 ∈ Z. ¬accept(M1, s, n1) ∨ accept(M1, s, n1)), Push accept(M1, s, n1) inside ∃
∀s ∈ Sigma∗, n1 ∈ Z. ∃n2 ∈ Z. accept(M1, s, n1) ⇒ accept(M1, s, n1)), (p ⇒ q) ≡ (¬p ∨ q)

Likewise, we require that any string accepted by M2 is accepted by M1. Combining these two re-
quirement, we get

M1#M2 ∈ E
⇔ ∀s ∈ Sigma∗, n1 ∈ Z. ∃n2 ∈ Z. accept(M1, s, n1) ⇔ accept(M1, s, n1)),

Thus, E ∈ Π2. From the problem statement, TOTAL is complete for Π2. Thus, E ≤M Π2.
The above explanation completes a perfectly acceptable solution. I’ll now finish the solution without
relying on the claim from the problem statement that TOTAL is complete for Π2. Given M1#M2,
construct M ′, the description of a TM that on input w$n does the following:

1. Run M1 for n steps on string w.
If M1 accepts within n steps,

1.a. then, M ′ runs M2 on w.
If M2 accepts,

1.a.i then, M ′ goes to step 2.
1.a.ii otherwise (M2 rejects or loops on w), M ′ loops.

1.b. otherwise (M1 rejects or is still running after n steps on input w), M ′ goes to step 2.
2. Run M2 for n steps on string w.

and take the corresponding actions as described above, exchanging the roles of M1 and M2.
With this construction, M ′ loops on input n$w iff either of M1 or M2 accepts w after at most n steps
and the other machine rejects or loops when run with input w. M ′ halts for all other inputs. Thus,

M ′ ∈ TOTAL ⇔ M1#M2 ∈ E

This shows that E ≤M TOTAL.
Note: it is straightforward to generalize the argument above to show that TOTAL is complete for Π2

as claimed in the problem statement.
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Having shown that TOTAL ≤M E and E ≤M TOTAL and give that TOTAL is complete for Π2, we
conclude that E is complete for Π2.

6. (50 points, adapted from Kozen) Let M = (Q, Σ,Γ, δ, q0, qaccept , qreject) be a TM that never overwrites its
input. Formally,

ImmutableInput(Q, Σ,Γ, δ, q0, qaccept , qreject)
= ∀q, q′ ∈ Q. ∀c, c′ ∈ Γ. ∀d ∈ {L,R}. ((δ(q, c) = (q′, c′, d)) ∧ (c ∈ Σ)) ⇒ (c = c′)

M can write anything it wants on the portion of the tape that is initially blank.

(a) (30 points) Prove that for any TM M with ImmutableInput(M), L(M) is regular.
Solution: We start by considering how much the TM M can “figure out” about its input string by making

read-only passes over the string. We then show that a DFA can do the same thing. Without loss of
generality, I’ll assume that the input string to M is not the empty string – if the set of not empty strings
that M accepts is A and A is regular, then the set of all strings that M accepts is either A or A ∪ {ε}
which are both regular sets as well.
Let M be a TM; and let α be a configuration of M . I’ll write ΨM (α, k) to denote the state that M
is in the first time it reaches the kth tape square when starting from configuration α. If M does not
reach the kth tape square, then I’ll define ΨM (α, k) as described below:

If M reaches the accepting state, then ΨM (α, k) = qaccept .
If M reaches the rejecting state, then ΨM (α, k) = qreject .
If M loops and therefore never reaches the kth tape square, then ΨM (α, k) = qreject . Looping can

be detected: the machine loops iff it visits the same square twice in the same state.
Now, consider running M on input w. By our assumption that w 6= ε, we can write w = uc for some
c ∈ Σ. Let Q = {q0, q1, . . . qn−1} be the set of states for M (for example qaccept could be q1 and
qreject could be q2). Shortly, I will show how we can build a machine M ′ that when run on input w
does the following:

1. Scan across w (only moving to the left).
2. Write a string of the form

ΨM (q0w, |w|+1)·ΨM (uq0c, |w|+1)·ΨM (uq1c, |w|+1)·ΨM (uq2c, |w|+1) · · ·ΨM (uqn−1c, |w|+1) a
on its tape immediately after w. If ΨM (q0w, |w|+ 1) = qaccept , M ′ immediately accepts, and if
If ΨM (q0w, |w|+ 1) = qreject , M ′ immediately rejects.

3. Move the tape head to the first blank square (immediately after the a) and simulate M starting
from state ΨM (q0w|w| + 1). If M ever moves to the a symbol, this means that M would make
another sojourn into w. If M is in state q when it moves to the a symbol, then M ′ looks up
ΨM (uqc, |w| + 1) on its tape, and moves back to the symbol after the a in that state. Note that
this correctly simulates M .

With these moves, M ′ accepts w iff M accepts it. Thus, whether or not w ∈ L(M) can be determined
from the string that M ′ wrote, listing the values for ΨM . We’ll complete this proof that L(M) is
regular by showing that this list of function values corresponds to writing down the state of a DFA.
For any non-empty, string sc let

λ(sc) = (Ψ(q0sc, |sc|+ 1), Ψ(sq0c, |sc|+ 1),Ψ(sq1c, |sc|+ 1), . . . Ψ(sqn−1c, |sc|+ 1))

Λ has n + 1 elements, each of which has n possible values. Thus there are nn+1 possible values
for λ. Let Λ denote the set of all possible values for λ plus one extra value, λ0. We’ll note that for
c ∈ Σ, λ(c) is straighforward to compute, and that for s 6= ε, λ(sc) depends only on s and c. Let
δ(λ0, c) = λ(c), and for θ = λ(s), let δ(θ, c) = λ(sc). Now we define a DFA D = (Λ, Σ, δ, λ0, F ).
Note that the state of D after reading string w corresponds to the string that M ′ writes on its tape after
reading the same string. Let F be the set of states for which M ′ eventually accepts. By construction:
L(D) = L(M ′) = L(M). Thus, M recognizes a regular language.
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(b) (10 points) Show that the language

F1 = {M | ImmutableInput(M)}

is Turing decidable.

Solution: ImmutableInput is an assertion about the transition function. Just check the tuples that de-
scribe δ to make sure that there are none that modify tape squares that hold symbols from Σ.

(c) (10 points) Show that the language

F2 = {M#w | ImmutableInput(M) ∧ (w ∈ L(M)}

is not Turing decidable.

Solution: Build a TM that scans over its input, writes a “left-endmarker”, writes w to the right of the
endmarker, and runs some other machine, M ′ on w (M ′ never moves its head to the left of the
endmarker). Now, M will recognizes Σ∗ if M ′ accepts w and M recognizes ∅ otherwise. Thus,
we’ve reduced ATM to F2 and conclude that F2 is Turing undecidable.
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