CpSc 421

Homework 8 Extra Credit

Due: Nov. 10, 4pm

Attempt up to three of the problems below.

1. (15 points) Let $G = (V, \Sigma, R, Expr)$ be a CFG with variables $V = \{Expr, Factor, Term\}$, and terminals $\Sigma = \{CONSTANT, IDENTIFIER, PLUS, TIMES, LPAREN, RPAREN\}$ and rules:

Expr	\rightarrow	Term		ExprPLUS Term	
Term	\rightarrow	Factor		<i>Term</i> Times <i>Factor</i>	
Factor	\rightarrow	IDENTIFIER	Ĺ	CONSTANT	LPAREN <i>Expr</i> RPAREN

Here are regular expressions for the terminals:

Whitespace between terminals is ignored.

For each string below, either show that it is generated by G by drawing a parsetree or showing a derivation, or explain why it is not generated by G.

- (a) 2*a+b
- (b) a+2*b
- (c) a-1
- (d) (aardvark+2)*antelope
- (e) 2x + 3*(y+z)
- 2. (20 points), Sipser, problem 2.27

Let $G = (V, \Sigma, R, S)$ be the following grammar:

 $\begin{array}{rcl} STMT & \rightarrow & ASSIGN \mid IfThen \mid IfThenElse \\ IfThen & \rightarrow & \text{if condition then } STMT \\ IfThenElse & \rightarrow & \text{if condition then } STMT & \text{else } Stmt \\ ASSIGN & \rightarrow & a\text{:=1} \\ & \Sigma & = & \{\text{if, condition then, else, a:=1}\} \\ & V & = & \{STMT, IfThen, IfThenElse, ASSIGN\} \end{array}$

G is a natural-looking grammar for a fragment of a programming language, but G is ambiguous.

- (a) (10 points) Show that G is ambiguous.
- (b) (10 points) Give a new, unambiguous grammar for the same language.
- 3. (**32 points**) For each language below, either show that it is contex-free or prove that it is not. Please give a short explanation of how any CFG or PDA that you use for your solution works.

$$C_{1} = \{ \underline{a}^{i} \mathbf{b}^{j} \mathbf{c}^{k} \mid i \leq j \leq k \}$$

$$C_{2} = \overline{C_{1}}$$

$$C_{3} = \{ \underline{a}^{i} \mathbf{b}^{j} \mid i \in \{j, 2j\} \}$$

$$C_{4} = \overline{C_{3}}$$

4. (40 points) Let Σ be any finite alphabet with $|\Sigma| \ge 2$. Let

$$D = \{s \in \Sigma^* \mid \exists w \in \Sigma^*. \ s = ww\}$$

- (a) (10 points) Prove that D is not context-free.
- (b) (**30 points**) Prove that \overline{D} is context-free.
- 5. (40 points) A *type 0 grammar* is like a context-free grammar, except that the rules are of the form $\alpha \rightarrow \beta$ where α and β can be arbitrary strings of variables and terminals.
 - (a) (10 points) Write a type-0 grammar that generates the language

$$\{s \in \{a, b, c\}^* \mid \exists n \in \mathbb{Z}^{\geq 0} . s = a^n b^n c^n\}$$

- (b) (10 points) Show that every language that is generated by a type 0 grammar is Turing recognizable.
- (c) (20 points) Show that every language that is Turing recognizable is generated by a type 0 grammar.
- 6. (**50 points**) Let $\Sigma = \{1\}$.
 - (a) (15 points) Show a language, $F_1 \subseteq \Sigma^*$ such that F_1 is not Turing decidable.
 - (b) (15 points) Let $F_2 \subseteq \Sigma^*$ be context-free. Show that F_2 is regular.
 - (c) (20 points) Let $F_3 \subseteq \Sigma^*$ be any language. Show that F_3^* is regular.