Extra Credit

Attempt up to three of the problems below.

1. (15 points) Let $G=(V, \Sigma, R$, Expr $)$ be a CFG with variables $V=\{$ Expr, Factor, Term $\}$, and terminals $\Sigma=\{$ CONSTANT, IDENTIFIER, PLUS, TIMES, LPAREN, RPAREN $\}$ and rules:

$$
\begin{array}{rl|ll}
\text { Expr } & \rightarrow \text { Term } & \text { Expr } \text { PLUSTerm } & \\
\text { Term } & \rightarrow \text { Factor } & \text { TermTimesFactor } & \\
\text { Factor } & \rightarrow \text { IDENTIFIER } & \text { CONSTANT } & \text { LPARENExpr RPAREN }
\end{array}
$$

Here are regular expressions for the terminals:

$$
\begin{aligned}
\text { CONSTANT } & \equiv(0 \cup 1 \cup \ldots \cup 9)^{+} \\
\text {IDENTIFIER } & \equiv(\mathrm{a} \cup \mathrm{~b} \cup \ldots \cup \mathrm{z} \cup \mathrm{~A} \cup \mathrm{~B} \cup \ldots \cup \mathrm{z})^{*} \\
\text { PLUS } & \equiv+ \\
\text { TIMES } & \equiv * \\
\text { LPAREN } & \equiv(\\
\text { RPAREN } & \equiv)
\end{aligned}
$$

Whitespace between terminals is ignored.
For each string below, either show that it is generated by G by drawing a parsetree or showing a derivation, or explain why it is not generated by G.
(a) $2 * a+b$
(b) $a+2 * b$
(c) $a-1$
(d) (aardvark+2) *antelope
(e) $2 x+3 *(y+z)$
2. ($\mathbf{2 0}$ points), Sipser, problem 2.27

Let $G=(V, \Sigma, R, S)$ be the following grammar:

$$
\begin{aligned}
\text { STMT } & \rightarrow \text { ASSIGN|IfThen |IfThenElse } \\
\text { IfThen } & \rightarrow \text { if condition then STMT } \\
\text { IfThenElse } & \rightarrow \text { if condition then STMT else Stmt } \\
\text { ASSIGN } & \rightarrow \text { a:=1 } \\
\Sigma & =\{\text { if, condition then, else, a:=1\} } \\
V & =\{S T M T, \text { IfThen, IfThenElse, ASSIGN }\}
\end{aligned}
$$

G is a natural-looking grammar for a fragment of a programming language, but G is ambiguous.
(a) (10 points) Show that G is ambiguous.
(b) (10 points) Give a new, unambiguous grammar for the same language.
3. (32 points) For each language below, either show that it is contex-free or prove that it is not. Please give a short explanation of how any CFG or PDA that you use for your solution works.

$$
\begin{aligned}
& C_{1}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{C}^{k} \mid i \leq j \leq k\right\} \\
& C_{2}=\overline{C_{1}} \\
& C_{3}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mid i \in\{j, 2 j\}\right\} \\
& C_{4}=C_{3}
\end{aligned}
$$

4. (40 points) Let Σ be any finite alphabet with $|\Sigma| \geq 2$. Let

$$
D=\left\{s \in \Sigma^{*} \mid \exists w \in \Sigma^{*} . s=w w\right\}
$$

(a) ($\mathbf{1 0}$ points) Prove that D is not context-free.
(b) ($\mathbf{3 0}$ points) Prove that \bar{D} is context-free.
5. (40 points) A type 0 grammar is like a context-free grammar, except that the rules are of the form $\alpha \rightarrow \beta$ where α and β can be arbitrary strings of variables and terminals.
(a) ($\mathbf{1 0}$ points) Write a type-0 grammar that generates the language

$$
\left\{s \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*} \mid \exists n \in \mathbb{Z}^{\geq 0} . s=\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n}\right\}
$$

(b) ($\mathbf{1 0}$ points) Show that every language that is generated by a type 0 grammar is Turing recognizable.
(c) ($\mathbf{2 0}$ points) Show that every language that is Turing recognizable is generated by a type 0 grammar.
6. (50 points) Let $\Sigma=\{1\}$.
(a) ($\mathbf{1 5}$ points) Show a language, $F_{1} \subseteq \Sigma^{*}$ such that F_{1} is not Turing decidable.
(b) ($\mathbf{1 5}$ points) Let $F_{2} \subseteq \Sigma^{*}$ be context-free. Show that F_{2} is regular.
(c) ($\mathbf{2 0}$ points) Let $F_{3} \subseteq \Sigma^{*}$ be any language. Show that F_{3}^{*} is regular.

