
CpSc 421 Homework 7 Solutions

1. (10 points) Let A1 = {D1#D2 | D1 andD2 describe DFAs andL(D1) ⊆ L(D2)}. In English,D1#D2 ∈ A1

iff D1 andD2 describe DFAs and every string that is recognized by the DFA described byD1 is also recognized
by the DFA described byD2. You can assume thatD1 andD2 are described as in the Oct. 24 lecture notes, or
any other reasonable description. Show thatA1 is Turing decidable.

Solution: We know that regular languages are closed under union and complement, and the methods presented
in class (and in Sipser) for deriving a DFA the recognizes the union or complement of the language(s)
recognized by other DFA(s) are straightforward and computable. This problem asks ifL(D1) ∪ L(D2) =
Σ∗. To determine this, a TM can derive a DFA forL(D1) ∪ L(D2) = Σ∗ and verify that every state
reachable from the initial state of this DFA is accepting.

2. (15 points) Let A2 = {G | G describe CFG andL(G) ⊇ L(1∗)}. In other words,G generates every string that
consists of zero or more 1’s (it may generate other strings as well). Show thatA2 is Turing decidable.

Solution: I’ll assume thatG is in CNF. If not, a TM can derive an equivalent CNF grammar as described in
class. Letn be the number of variables inG. As shown in HW 6,G has a pumping lemma constant,p,
that is at most2n−1. We note that for anyk ≥ p, if G generates1k thenG also generates1k+p! (proof
below). Therefore, ifG generates all strings of the form1m for 0 ≤ m < p! + p, thenG generatesΣ∗. A
TM can individually check thatG generates each of thesep! + p strings as shown in class (and in Sipser).
If it does, the TM accepts; otherwise it rejects.

Here’s the proof that ifG generates1k it also generates1k+p!. By the pumping lemma, ifG generates
1k, then we divide1k into stringsu, v, x, y andz such thatuvxyz = 1k, |vxy| ≤ p, |vy| > 0 and
uvixyiz ∈ L(G) for any i ≥ 0. Let h = |vy| and note that1 ≤ h ≤ p. By the pumping lemma,
1k+ih ∈ L(G) for any i ≥ 0. Because1 ≤ h ≤ p, h is a factor ofp!, andp!/h is a non-negative integer.
Thus1k+(p!/h)h = 1k+p! ∈ L(G) as claimed.

3. (15 points) In class we considered a Java method,boolean halt(String src, String input), that is supposed to
return true if the Java program with the source code given by stringsrc halts when run with inputinput and
returns false otherwise. We showed in class that it is impossible to write such a method. Our proof involved
passing the source code for a Jave program as both thesrc andinput arguments tohalt.

Now consider a new method,boolean haltNoJavaAsInput(String src, String input). This method returns
false if input is a syntactically correct Java program. Otherwise,haltNoJavaAsInput returns true if the program
described bysrc halts when run with inputinput and returns false otherwise (just linehalt described above).
Note that the question of whether or not a program is syntactically correct Java is Turing decidable – this is what
a Java compiler does. More formally,haltNoJavaAsInput is a decider for the languageA3, with

A3 = {J#I | J is the source code for a Java program
∧ I is a string that isnot a syntactically correct Java program
∧ ProgramJ halts when run with inputI

}

Show that it is impossible to write a methodhaltNoJavaAsInput as described above. Equivalently, show that
languageA3 is not Turing decidable.

Solution: All we have to do is modify stringinput so that it won’t be a valid Java program and make our
counter-example generator undo that change. For example, no Java program can start with the character}.
So, we’ll make a version program that discards the first character of its input and uses that assrc and uses
the entire string asinput. Here’s the result:

boolean halt(String src, String input) {
/* whatever halt does */



}
boolean undecidableForHalt(String input) {

if(halt(input.substring(1), input)) while(1);
return(true);

}

Let S be the source for this program, and invokeundecidableForHalt with the parameter} · S. Note that
} ·S is not a syntactically correct Java program. Then,undecidableForHalt will invoke halt(S, } ·S). As
with the original halting problem, we get a contradiction no matter whathalt returns.

4. (15 points) In class, we constructed one example that must cause a proposed function forhalt to give the wrong
answer or never terminate. Show that for any proposed implementation ofhalt there must be an infinite number
of inputs that cause it to give the wrong answer or never terminate.

Solution: For the sake of contradiction, assume otherwise. In particular, lethalt that gives the correct answer
for all but a finite number of inputs. LetΣ be the input alphabet and let

ShouldHaveSaidHalts ⊂ Σ∗, inputs, where the correct answer is halt, buthalt looped or returnedfalse.
ShouldHaveSaidLoops ⊂ Σ∗, inputs, where the correct answer is not halt, buthalt looped or returnedtrue.

BecauseShouldHaveSaidHalts andShouldHaveSaidLoops are finite, both are regular. Thus, there is a
DFA Dhalts that recognizesShouldHaveSaidHalts and a DFADhalts that recognizesShouldHaveSaidLoops.
Now, we can construct a TM (or Java program, etc.) that first checks if DFADhalts accepts the input string
and if so, our TM accepts. Second, it checks if DFADloops accepts the input string, and if so, our TM re-
jects. Finally, it runshalt on the input string. Because all wrong and looping cases forhalt where handled
by the two DFAs,halt will give the correct answer.
We have just shown that if there is a TM (or Java method, etc.) that gives decides correctly on all but a
finite set of inputs, we can use it to construct a TM (or Java method, etc.) that decides correctly on all
inputs. However, we have shown that there is not TM (or Java method, etc.) that decides correctly on all
inputs. Thus, there cannot be one that decides correctly on all but a finite set.

Further remarks: Let’s write this in “Java” and see what happens. Let’s say that we have a Java method

boolean halt(String prog, String input) { . . . }
that gives the right answer on all but a finite set of inputs. LetString halts[][2] be an array where for each
i, the Java program described byhalts[i][0] halts when run with inputhalts[i][1]. The arrayhalts holds
all examples wherehalt() loops or gives the wrong answer and should have returnedtrue. Let String
loops[][2] be the equivalent array for cases wherehalt() loops or gives the wrong answer and should have
returnedfalse. Now, we write the Java program shown in figure 1. Lets the string that is the source code
for this program. What happens theCounterExample program withs as its parameter?

If there is ani such thathalts[i][0] == halts[i][1] == s, then the program would loop forever; so we
conclude that[s, s] is not in thehalts array.

If there is ani such thatloops[i][0] == loops[i][1] == s, then the program would halt forever; so we
conclude that[s, s] is not in theloops array.

Now, we’re back to the original halting problem. The functionhalt will be called, and whether it returns
true or false, the actual program will do the opposite. We conclude that we cannot implement ahalt
that is correct for all but a finite set of inputs.

5. (35 points) Download the programmystery.java from

http://www.ugrad.cs.ubc.ca/∼cs421/hw/7/mystery.java

Look over the code, compile it, and run it – I promise that it’s not malicious.



class CounterExample {
static String halts[][2] = . . . ;
static String loops[][2] = . . . ;

static boolean halt(String prog, String input) { . . . }

static boolean correctedHalt(String prog, String input) {
for(int i = 0; i < halts.length; i++)

if((halts[i][0] == prog) && (halts[i][1] == input))
return(true);

for(int i = 0; i < loops.length; i++)
if((loops[i][0] == prog) && (loops[i][1] == input))

return(false);
return(halt(prog, input));

}

public static void main(String args[]) {
if(correctedHalt(args[0], args[0])) while(1);
else System.exit(0);

}
}

Figure 1: Example program for question 4

(a) (5 points) What does the program do? Just give a one-sentence description of the output that it produces.
You’ll get to explainhow it does it in the rest of the question.

Solution: The program prints a copy of its source code tostdout.

(b) (5 points) What is strings for?

Solution: The strings hold most of the source code fors as a string.

(c) (5 points) What does methodx() do?
A one sentence answer is enough. You’ll get to explain the details in the next three questions.

Solution: Methodx() produces the string that is the source code forMystery.java. as a string.

(d) (5 points) What do the first fourbuf.append(. . . )’s in x() do?

Solution: They insert the code before the string initializers fors into the string buffer that will hold the
source for the program.

(e) (5 points) What does the firstfor loop inx() do?

Solution: It copies the string initializers fors into the string buffer. It gets this strings froms itself.

(f) (5 points) What does the secondfor loop inx() do?

Solution: It copies the same strings froms into the string buffer. Howver, this time they are appended as
source statements and not as quoted strings.

(g) (5 points) What does methodfix(String) fix?

Solution: It takes care of characters that are “special” in Java strings: double-quote, backslash, and
newline.fix converts each of these into the forms that are used in Java string constants.

6. (20 points) A 2-PDA is a PDA with two stacks.

(a) (10 points) Describe a2-PDA that recognizes the language{w ∈ {a, b, c}∗ | ∃n. w = anbncn}. This
shows that a2-PDA is more powerful than a1-PDA.



Solution: My 2-PDA processes the strings in the phases described below:

q0: The 2-PDA starts by pushing special endmarkers,$, onto each stack and moves to stateq1.

q1: For eacha that it reads, the2-PDA pushes abullet onto the first stack. The2-PDA can make an
ε-move from stateq1 to stateq2.

q2: For eachb that it reads, the2-PDA pops a• from the first stack and pushes a• onto the second
stack. If the first stack doesn’t have a•, the machine rejects. The2-PDA can make anε-move
from stateq2 to stateq3.

q3: For eachc that it reads, the2-PDA pops a• from the second stack. If the both stacks have a$ as
the top-of-stack symbol, then the machine can make anε move to stateq4 and accept.

q4: The machine accepts. It can make no further moves from this state.

To summarize, the2-PDA uses its first stack to verify that the number ofa’s is equal to the number of
b’s. It uses its second stack to verify that the number ofb’s is equal to the number ofc’s.

(b) (10 points) Show that the class of languages recognized by2-PDAs is exactly the same as the set of
Turing recognizable languages. (Hint: Show that any Turing machine can be simulated by a2-PDA and
vice-versa).

Solution: Simulating a2-PDA with a TM is simple: use a 3-tape, non-deterministic TM. Two of the
tapes simulate the two stacks, and the third tape holds the input string. As in Sipser, we allow each
head to move left one square, move right one square, or stay at the same position with each step of the
full machine. This machine can then move across the input tape one symbol for each step, pushing
and/or popping symbols from the two stacks according to the non-deterministic, finite control of the
2-PDA.
Simulating a TM with a 2-PDA is nearly as straightforward. I’ll call the two stacksleft andright to
hold the tape contents to the left of the current head position and to the right respectively.
The 2-PDA starts by pushing endmarkers,` anda onto theleft andright stacks respectively. It then
pushes the input string onto the left stack. This corresponds to scanning the TM head across the input
string. The string is now all to the left of the TM head. The 2-PDA now pops symbols off of the left
stack and pushes them onto the right stack until it reaches the` endmarker. These are a bunch of
ε-moves that consume no input. Now, the2-PDA is has its stacks set-up to correspond to the TM’s
tape.
At each step of the simulation, the current TM tape symbol is represented by the symbol on the top
of the right stack. Based on the current state (held in the2-PDA state) and this symbol, the 2-PDA
simulates the TM move. In particular, if the TM moves its head to the right, then the 2-PDA pops the
current symbol off of theright stack and pushes the symbol that the TM writes at the current square
onto theleft stack. If the new top-of-stack symbol on the right is aa the 2-PDA pushes a blank (e.g.
¤) onto theright stack.
If the TM moves its head to the left with the current move, then the 2-PDA pops the current symbol
off of the right stack and pushes the symbol that the TM writes at the current square onto theright
stack. If the top-of-stack symbol on theleft stack is not à , the 2-PDA pops this symbol off of the
left stack and pushes it onto the right stack.
If the 2-PDA enters the accept state for the TM, then it enters an accepting state. If it enters the reject
state for the TM, then the 2-PDA enters a terminal rejecting state.

7. (20 points, extra credit) A ray automatonconsists of an infinite number of DFAs,D0 D1, D2, . . . arranged in
a line. The automata all have the same set of states,Q, the same start stateq0 ∈ Q, and the same transition
functionδ : Q×Q×Q → Q. A configuration of a ray automaton is a functionC : Z≥0 → Q whereC(i) gives
the state of DFADi. The automaton moves from configurationC to configurationC′ iff

C′(0) = δ(q0, C(0), C(1))
C′(i) = δ(C(i− 1), C(i), C(i + 1)), i > 0



In other words, at each step, each DFA makes a transition according to its own state and the states of its left and
right neighbours. Because DFAD0 has no left neighbor, it always usesq0 as its left input. There is a special
stateqf , and the ray automaton halts iff it reaches a configuration,C whereD0 is in stateqf , i.e.C(0) = qf .

(a) (10 points) Prove that the halting problem for ray automata is undecidable.

Solution: We can simulate a TM,M = (Q, Σ,Γ, δ, q0, qaccept , qreject) running with inputw by using a
ray-automaton. The key idea is to use the states of the ray automaton to keep track of the symbols on
the TM’s tape, along with the head position and current state.
The set of states for the ray automaton is{0, 1, . . . |w|, qf} ∪ Γ ∪ (Γ×Q) where0 denotes the initial
state. LetI = {1 . . . |w|}. DFAs in states inI “count” until they reach their position and then
transition to the state for the corresponding symbol ofw. Here’s the details. Initially, every DFA is in
state0 and transitions to state1. Let d(k) be a DFA in statei ∈ I.

If d(k − 1) = 0, thend(k) is the leftmost DFA and it transitions to state(w1, q0) to start the
computation.w1 denotes the first symbol ofw.

If d(k − 1) ∈ I, thend(k) transitions to statei + 1; in other words, it keeps counting.

If d(k − 1) ∈ Γ, thend(k) transitions to statewi wherewi is theith symbol ofw.

If d(k − 1) ∈ Γ×Q, then the TM’s tape head is at squarek − 1 at this step, and its represented by
DFA k − 1 . If the TM’s head moves to the right,d(k) transitions to state(wi, q

′) whereq′ is the
next state of the TM. Otherwise (the TM’s head moves to the left),d(k) transitions to statewi.

If i > |w| thend(k) transitions to the state corresponding to the blank symbol.

At the end of|w|+ 1 steps, the DFAs have taken on states corresponding to the symbols of the TM’s
input tape. We have also simulated the fist|w| − 1 steps of the TM’s operation as described below.
After the second step, there will always be exactly one DFA in a state inΓ×Q. This corresponds to
the current TM tape head position and state. Let this be DFAi and let it be in state(c, q).
If δ(q, c) = (q′, c′, R), then DFAi transitions to statec′. If DFA i + 1 is in stated ∈ Γ, then DFA

i + 1 transitions to state(d, q′). Otherwise, DFAi + 1 must be in statej ∈ I, and it transitions to
state(wj , q

′).
If δ(q, c) = (q′, c′, L), then DFAi transitions to statec′, and DFAi − 1 transitions to state(d, q′)

whered ∈ Γ is the current state of DFAi− 1.

These operations simulate TM moves.
If a transtion would bring a DFA to a state of the form(c, qaccept) then it goes to stateqf . Furthermore,
if the right neighbour of a DFA is in stateqf the DFA transitions to stateqf . This ensures that the
leftmost DFA will eventually enter stateqf if any DFA ever enters stateqf .
All other DFAs not covered by situations described above stay in their same state for the next step.
They are holding TM tape symbols but aren’t at or next to the position corresponding to the TM tape
head.
This ray-automaton halts iff the Turing machine being simulated accepts its input string. Thus, every
Turing recognizable language can be recognized by a ray-automaton.

(b) (10 points) Is the halting problem for ray automata Turing recognizable? Justify your answer.

Solution: Yes. If a ray-automaton halts, it does so after some finite number of steps. Let’s call this
numbern. We note that the leftmost DFA can be affected by at most the nextn DFAs to the right in
the course of an step computation. Thus, it is sufficient to simulate a ray-automaton consisting ofn
DFAs. The challenge is that we don’t know before hand how bign is.
Let a bounded ray-automaton be like a ray automaton but with only a fixed number of DFAs. There
is a special stateqa. The rightmost DFA always usesqa as its right input. If any DFA hasqa as an
input, it transitions toqa in the next (and therefore all subsequent steps).
A TM can simulate a bounded ray-automaton with one DFA for one step, then one with two DFAs
for two steps, and so one. Each such simulation involves a finite number of steps. If the orginal ray
automaton halts aftern steps, then the TM will eventually simuate ann-DFA automaton forn steps



and find that the leftmost DFA is in stateqf and accept. If the original ray automaton loops, then the
simulation described above will run forever as well.
Therefore, the halting problem for ray automata is Turing recognizable as claimed.


