CpSc421 Homework 7 Solutions

1. (10 pointg) Let A; = {D1#D> | D; and D, describe DFAs and.(D;,) C L(D-)}. In English,D,#Ds € A,
iff D1 andD, describe DFAs and every string that is recognized by the DFA describéy iy/also recognized
by the DFA described by),. You can assume thd?; and D, are described as in the Oct. 24 lecture notes, or
any other reasonable description. Show thais Turing decidable.

Solution: We know that regular languages are closed under union and complement, and the methods presented
in class (and in Sipser) for deriving a DFA the recognizes the union or complement of the language(s)
recognized by other DFA(S) are straightforward and computable. This problem dgi{sif U L(Ds) =
¥*. To determine this, a TM can derive a DFA fafD;) U L(D2) = ¥* and verify that every state
reachable from the initial state of this DFA is accepting.

2. (15 pointg) Let A; = {G | G describe CFG and(G) 2 L(1*)}. In other words(Z generates every string that
consists of zero or more 1's (it may generate other strings as well). ShowtshafTuring decidable.

Solution: I'll assume that7 is in CNF. If not, a TM can derive an equivalent CNF grammar as described in
class. Letn be the number of variables . As shown in HW 6,G has a pumping lemma constapt,
that is at mosR™~!. We note that for any > p, if G generated” thenG also generates**?' (proof
below). Therefore, if7 generates all strings of the fort* for 0 < m < p! + p, thenG generatex*. A
TM can individually check thafz generates each of thegk+ p strings as shown in class (and in Sipser).
If it does, the TM accepts; otherwise it rejects.

Here’s the proof that if> generated” it also generate$**+?'. By the pumping lemma, i@ generates
1%, then we dividel* into stringsu, v, =, y and z such thatuvzyz = 1%, |vay| < p, |vy| > 0 and
w'zy'z € L(G) foranyi > 0. Leth = |vy| and note that < h < p. By the pumping lemma,
15+ ¢ [(G) for anyi > 0. Becausd < h < p, h is a factor ofp!, andp!/h is a non-negative integer.
Thus1*+®/Mh — 1k+rt ¢ (@) as claimed.

3. (15 pointg) In class we considered a Java methoolhlean halt(String src, String input), that is supposed to
return true if the Java program with the source code given by ssriodpalts when run with inpuinput and
returns false otherwise. We showed in class that it is impossible to write such a method. Our proof involved
passing the source code for a Jave program as botr¢rendinput arguments tdnalt.

Now consider a new methothoolean haltNoJavaAsinput(String src, String input). This method returns

false if input is a syntactically correct Java program. OtherwigdtNoJavaAsInput returns true if the program
described bysrc halts when run with inpuinput and returns false otherwise (just lihalt described above).

Note that the question of whether or not a program is syntactically correct Java is Turing decidable — this is what
a Java compiler does. More formalhgltNoJavaAsinput is a decider for the languagé;, with

Az = {JH#I] J is the source code for a Java program
A 1 is astring that is1ot a syntactically correct Java program
A ProgramJ halts when run with inpuf

}

Show that it is impossible to write a methbdltNoJavaAsinput as described above. Equivalently, show that
languageAs is not Turing decidable.

Solution: All we have to do is modify stringnput so that it won't be a valid Java program and make our
counter-example generator undo that change. For example, no Java program can start with the pharacter
So, we'll make a version program that discards the first character of its input and usesstiteded uses
the entire string amput. Here’s the result:

boolean halt(String src, String input) {
/* whatever halt does */



}

boolean undecidableForHalt(String input) {
if(halt(input.substring(1), input)) while(1);
return(true);

Let S be the source for this program, and invakedecidableForHalt with the paramete} - S. Note that
}-S'is not a syntactically correct Java program. ThardecidableForHalt will invoke halt(S, } - S). As
with the original halting problem, we get a contradiction no matter \ila#itreturns.

4. (15 points) In class, we constructed one example that must cause a proposed funchiatt forgive the wrong
answer or never terminate. Show that for any proposed implementati@itdhere must be an infinite number
of inputs that cause it to give the wrong answer or never terminate.

Solution: For the sake of contradiction, assume otherwise. In particuldralethat gives the correct answer
for all but a finite number of inputs. Lét be the input alphabet and let

ShouldHaveSaidHalts C X*, inputs, where the correct answer is halt, balt looped or returnethlse.
ShouldHaveSaidLoops C 3*, inputs, where the correct answer is not halt, it looped or returnetfue.

BecauseShouldHaveSaidHalts and ShouldHaveSaidLoops are finite, both are regular. Thus, there is a
DFA Dy, .15 thatrecognizeShouldHaveSaidHualts and a DFAD), ;s that recognizeShouldHaveSaidLoops.
Now, we can construct a TM (or Java program, etc.) that first checks if DAy accepts the input string

and if so, our TM accepts. Second, it checks if DBA,.,s accepts the input string, and if so, our TM re-
jects. Finally, it runshalt on the input string. Because all wrong and looping casebkdtirvhere handled

by the two DFAshalt will give the correct answer.

We have just shown that if there is a TM (or Java method, etc.) that gives decides correctly on all but a
finite set of inputs, we can use it to construct a TM (or Java method, etc.) that decides correctly on all
inputs. However, we have shown that there is not TM (or Java method, etc.) that decides correctly on all
inputs. Thus, there cannot be one that decides correctly on all but a finite set.

Further remarks: Let's write this in “Java” and see what happens. Let's say that we have a Java method
boolean halt(String prog, String input) { ...}

that gives the right answer on all but a finite set of inputs. 3teing halts[][2] be an array where for each

i, the Java program described bglts[i][0] halts when run with inpubalts[i][1]. The arrayhalts holds

all examples wher&alt() loops or gives the wrong answer and should have retutned Let String
loops[][2] be the equivalent array for cases wheadt() loops or gives the wrong answer and should have
returnedfalse. Now, we write the Java program shown in figure 1. kéte string that is the source code
for this program. What happens tB@unterExample program withs as its parameter?

If there is ani such thathalts[i][0] == halts[i][1] == s, then the program would loop forever; so we
conclude thafs, s] is not in thehalts array.

If there is ani such thatloops[i][0] == loops]i][1] == s, then the program would halt forever; so we
conclude thats, s] is not in theloops array.

Now, we're back to the original halting problem. The functlwait will be called, and whether it returns
true or false, the actual program will do the opposite. We conclude that we cannot impleh@nt a
that is correct for all but a finite set of inputs.

5. (35 points) Download the programystery.java from
http://www.ugrad.cs.ubc.ca/~cs421/hw/7/mystery.java

Look over the code, compile it, and run it — | promise that it's not malicious.



class CounterExample {
static String halts[][2] = .. .;
static String loops[][2] =

static boolean halt(String prog, String input) { ...}

static boolean correctedHalt(String prog, String input) {
for(inti = 0; i < halts.length; i++)
if((halts[i][0] == prog) && (halts[i][1] == input))
return(true);
for(inti = 0; i < loops.length; i++)
if((loops[i][0] == prog) && (loops][i][1] == input))
return(false);
return(halt(prog, input));
}

public static void main(String args[]) {
if(correctedHalt(args[0], args[0])) while(1);
else System.exit(0);

Figure 1: Example program for question 4

(a) (6 points) What does the program do? Just give a one-sentence description of the output that it produces.
You'll get to explainhowit does it in the rest of the question.

Solution: The program prints a copy of its source codstidout.
(b) (5 points) What is strings for?
Solution: The strings hold most of the source code felas a string.

(c) (5 points) What does methox() do?
A one sentence answer is enough. You'll get to explain the details in the next three questions.

Solution: Methodx() produces the string that is the source codeMgstery.java. as a string.
(d) (5 points) What do the first foubuf.append(...)’s in x() do?

Solution: They insert the code before the string initializers $anto the string buffer that will hold the
source for the program.

(e) (6 points) What does the firdor loop inx() do?
Solution: It copies the string initializers fas into the string buffer. It gets this strings frogritself.
() (5 points) What does the secoridr loop inx() do?

Solution: It copies the same strings frosrinto the string buffer. Howver, this time they are appended as
source statements and not as quoted strings.

(g) (5 points) What does methofix(String) fix?
Solution: It takes care of characters that are “special” in Java strings: double-quote, backslash, and
newline.fix converts each of these into the forms that are used in Java string constants.
6. (20 points) A 2-PDA is a PDA with two stacks.

(a) (10 points) Describe &2-PDA that recognizes the language € {a,b,c}* | In. w = a™b™c"}. This
shows that 2-PDA is more powerful than &PDA.



Solution: My 2-PDA processes the strings in the phases described below:
qo: The 2-PDA starts by pushing special endmark®rsnto each stack and moves to state
q1: For eacha that it reads, thé-PDA pushes dullet onto the first stack. Th2-PDA can make an
e-move from state; to stategs.
q2: For eachb that it reads, th@-PDA pops ae from the first stack and pushes anto the second
stack. If the first stack doesn't havesathe machine rejects. THePDA can make am-move
from stateg, to stategs.

g3: For eactlr that it reads, th@-PDA pops a from the second stack. If the both stacks hatss
the top-of-stack symbol, then the machine can makeraove to state, and accept.

q4: The machine accepts. It can make no further moves from this state.

To summarize, the-PDA uses its first stack to verify that the numbeaéis equal to the number of
b’s. It uses its second stack to verify that the numbdr'sis equal to the number afs.

(b) (10 points) Show that the class of languages recognize@B8DAs is exactly the same as the set of
Turing recognizable languages. (Hint: Show that any Turing machine can be simulatedRpAand
vice-versa).

Solution: Simulating a2-PDA with a TM is simple: use a 3-tape, non-deterministic TM. Two of the
tapes simulate the two stacks, and the third tape holds the input string. As in Sipser, we allow each
head to move left one square, move right one square, or stay at the same position with each step of the
full machine. This machine can then move across the input tape one symbol for each step, pushing
and/or popping symbols from the two stacks according to the non-deterministic, finite control of the
2-PDA.

Simulating a TM with a 2-PDA is nearly as straightforward. I'll call the two stdefsandright to

hold the tape contents to the left of the current head position and to the right respectively.

The 2-PDA starts by pushing endmarkersand— onto theleft andright stacks respectively. It then
pushes the input string onto the left stack. This corresponds to scanning the TM head across the input
string. The string is now all to the left of the TM head. The 2-PDA now pops symbols off of the left
stack and pushes them onto the right stack until it reachels #medmarker. These are a bunch of
e-moves that consume no input. Now, DA is has its stacks set-up to correspond to the TM’s
tape.

At each step of the simulation, the current TM tape symbol is represented by the symbol on the top
of theright stack. Based on the current state (held in2HeDA state) and this symbol, the 2-PDA
simulates the TM move. In particular, if the TM moves its head to the right, then the 2-PDA pops the
current symbol off of theight stack and pushes the symbol that the TM writes at the current square
onto theleft stack. If the new top-of-stack symbol on the right is ¢he 2-PDA pushes a blank (e.qg.

) onto theright stack.

If the TM moves its head to the left with the current move, then the 2-PDA pops the current symbol
off of the right stack and pushes the symbol that the TM writes at the current square omighthe
stack. If the top-of-stack symbol on theft stack is not &, the 2-PDA pops this symbol off of the

left stack and pushes it onto the right stack.

If the 2-PDA enters the accept state for the TM, then it enters an accepting state. If it enters the reject
state for the TM, then the 2-PDA enters a terminal rejecting state.

7. (20 points extra credi) A ray automatorconsists of an infinite number of DFA8), D, D, ...arranged in
a line. The automata all have the same set of stéjleshe same start statg € @, and the same transition
functiond : Q x Q@ x Q — Q. A configuration of a ray automaton is a functién Z=° — Q whereC(i) gives
the state of DFAD;,. The automaton moves from configurati@mo configuratiorC’ iff

C'(0) d(g0,€(0),C(1))
C'(i) = 6&(Ci—1),C(i),Cli+1)), i>0



In other words, at each step, each DFA makes a transition according to its own state and the states of its left and
right neighbours. Because DFB, has no left neighbor, it always useg as its left input. There is a special
stategy, and the ray automaton halts iff it reaches a configurationhereDj is in statey;, i.e.C(0) = g¢;.

(a) (10 points) Prove that the halting problem for ray automata is undecidable.

Solution: We can simulate a TMM = (Q, X, T, 9, qo, Gaccept > dreject) FUNNING With inputw by using a
ray-automaton. The key idea is to use the states of the ray automaton to keep track of the symbols on
the TM'’s tape, along with the head position and current state.

The set of states for the ray automato0s1, . . . |w|, ¢y} UT U (I x @) where0 denotes the initial
state. Let/ = {1...|w|}. DFAs in states in/ “count” until they reach their position and then
transition to the state for the corresponding symbabofiere’s the details. Initially, every DFA is in
state0 and transitions to state Letd(k) be a DFA in staté € I.

If d(k — 1) = 0, thend(k) is the leftmost DFA and it transitions to stateq, qo) to start the
computationw; denotes the first symbol af.

If d(k — 1) € I, thend(k) transitions to staté+ 1; in other words, it keeps counting.

If d(k — 1) € T', thend(k) transitions to state; wherew; is thei‘" symbol ofw.

If d(k — 1) € T x Q, then the TM’s tape head is at squéare- 1 at this step, and its represented by
DFA k — 1. If the TM’s head moves to the righi(k) transitions to statéw;, ¢’) whereq’ is the
next state of the TM. Otherwise (the TM’s head moves to the Iéff)) transitions to state;.

If ¢ > |w| thend(k) transitions to the state corresponding to the blank symbol.

At the end oflw| + 1 steps, the DFAs have taken on states corresponding to the symbols of the TM’s
input tape. We have also simulated the fist — 1 steps of the TM’s operation as described below.
After the second step, there will always be exactly one DFA in a stdfexr). This corresponds to

the current TM tape head position and state. Let this be D&#Ad let it be in statéc, q).

If 6(q,c) = (¢’, ¢, R), then DFA: transitions to state’. If DFA i + 1 is in stated € T', then DFA
i+ 1 transitions to staté&d, ¢’). Otherwise, DFA + 1 must be in statg € I, and it transitions to
state(w,, ¢').

If 6(q,c) = (¢, ¢, L), then DFA; transitions to state’, and DFA; — 1 transitions to statéd, ¢)
whered € I is the current state of DFA— 1.

These operations simulate TM moves.

If a transtion would bring a DFA to a state of the fo(m ¢,...p:) then it goes to statg;. Furthermore,

if the right neighbour of a DFA is in staig; the DFA transitions to statg;. This ensures that the
leftmost DFA will eventually enter statg if any DFA ever enters staig .

All other DFAs not covered by situations described above stay in their same state for the next step.
They are holding TM tape symbols but aren’t at or next to the position corresponding to the TM tape
head.

This ray-automaton halts iff the Turing machine being simulated accepts its input string. Thus, every
Turing recognizable language can be recognized by a ray-automaton.

(b) (10 pointsg) Is the halting problem for ray automata Turing recognizable? Justify your answer.

Solution: Yes. If a ray-automaton halts, it does so after some finite number of steps. Let’s call this
numbern. We note that the leftmost DFA can be affected by at most them®#As to the right in
the course of a step computation. Thus, it is sufficient to simulate a ray-automaton consisting of
DFAs. The challenge is that we don’t know before hand howrbig;
Let a bounded ray-automaton be like a ray automaton but with only a fixed number of DFAs. There
is a special state;. The rightmost DFA always uses, as its right input. If any DFA hag, as an
input, it transitions tayy in the next (and therefore all subsequent steps).
A TM can simulate a bounded ray-automaton with one DFA for one step, then one with two DFAs
for two steps, and so one. Each such simulation involves a finite number of steps. If the orginal ray
automaton halts after steps, then the TM will eventually simuate afrDFA automaton fom steps



and find that the leftmost DFA is in stae and accept. If the original ray automaton loops, then the
simulation described above will run forever as well.
Therefore, the halting problem for ray automata is Turing recognizable as claimed.



