NO LATE HOMEWORK ACCEPTED

1. (20 points) Use the pumping lemma to prove that each language listed below is not regular. For each language, I state Σ the input alphabet.
(a) $A_{1}=\{w \mid$ the number of zeros in w is less than the number of ones $\} . \Sigma=\{0,1\}$. For example, 1, 011, and 10100111 are in this language but 0 and 100 are not.
(b) $A_{2}=1^{2^{n}} . \Sigma=\{1\}$.

For example, 1, 11 and 11111111 are in this language but 111 is not.
Here's an example of how you can solve a problem like those above:
Example: $\{w||\# 0(w)-\# 1(w)|<4\}$, where $\# 0(w)$ is the number of 0 's in $w, \# 1(w)$ is the number of 1's in w, and $\Sigma=\{0,1\}$.

Solution: Let A be the language described above and let p be a proposed pumping lemma constant for
A. Let $w=0^{p} 1^{p+3}$. Clearly, $w \in A$. Let $x y z=w$. Let $n=|x y|$. To satisfy the pumping lemma, $n \leq p$; thus $x y=0^{n}$. Therefore $x y^{0} z=0^{p-|y|} 1^{p+3} \notin A$ because $|y|>1$. Thus, A does not satisfy the pumping lemma and is not regular.
You can write this with fewer words and say:
Let $p \mathrm{~b}$ a propose pumping lemma constant. Let $w=0^{p} 1^{p+3}$.
For any $x y z=w$ with $|x y| \leq p, x y^{0} z=0^{p-|y|} 1^{p+3} \notin A$.
Therefore, A is not regular.
2. (20 points) Let

$$
\Sigma_{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \cdots\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} .
$$

Σ_{3} contains all size 3 columns of 0 s and 1 s . A string of symbols in Σ_{3} gives three rows of 0 s and 1 s . Consider each row to be a binary number with the most significant bit first. For example, let

$$
w=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

The first row of w is the binary representation of 7 , the second row corresponds to 5 , and the third row corresponds to 12 .
Let

$$
B_{+}=\left\{w \in \Sigma_{3}^{*} \mid \text { the bottom row of } w \text { is the sum of the top two rows }\right\} .
$$

Show that B is regular.
3. (20 points) Let Σ_{3} be defined as in question 2 . Let

$$
B_{\times}=\left\{w \in \Sigma_{3}^{*} \mid \text { the bottom row of } w \text { is the product of the top two rows }\right\}
$$

Show that B is not regular.
4. (20 points) Consider the two languages described below:

$$
\begin{aligned}
& C_{1}=\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*} \mid \exists x, y \in \Sigma^{*} .(w=x y) \wedge \# a(x)=\# b(y)\right\} \\
& C_{2}=\left\{w \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*} \mid \exists x, y \in \Sigma^{*} .(w=x \cdot \mathrm{c} \cdot y) \wedge \# a(x)=\# b(y)\right\}
\end{aligned}
$$

One of these languages is regular and the other is not. Determine which is which and give short proofs for your conclusions.
5. ($\mathbf{3 0}$ points, from Sipser, problem 2.6)

Give context free grammars generating the following languages:
(a) (10 points) $\left\{w \mid \exists n \geq 0 .\left(w=\mathrm{a}^{n} \mathrm{~b}^{2 \mathrm{n}}\right) \vee\left(\mathrm{w}=\mathrm{a}^{3 \mathrm{n}} \mathrm{b}^{\mathrm{n}}\right)\right\}$
(b) (10 points) The complement of $\left\{w \mid \exists n \geq 0 . w=\mathrm{a}^{n} \mathrm{~b}^{n}\right\}$.
(c) (10 points) $\left\{x_{1} \mathrm{c} x_{2} \mathrm{c} \cdots x_{k} \mid\right.$ each $x_{i} \in\{\mathrm{a}, \mathrm{b}\}^{*}$, and for some i and $\left.j, x_{i}=x_{j}^{\mathcal{R}}\right\}$.

For parts (a) and (b), the alphabet is $\{a, b\}$. For part (c), the alphabet is $\{a, b, c\}$.
6. (20 points, Extra Credit Consider the language below from the September 22 lecture notes:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& A=\left(\mathrm{aa}^{*} \mathrm{c}\right)^{n}\left(\mathrm{bb} \mathrm{~b}^{*} \mathrm{c}\right)^{n} \cup \Sigma^{*} \mathrm{cc} \Sigma^{*}
\end{aligned}
$$

(a) (10 points) Prove that A satisfies the conditions of the pumping lemma as stated in Sipser or the September 22 notes. In other words, show that you can find a constant $p>0$ such that for any string $w \in A$ with $|w|>p$, you can find strings x, y and z such that $w=x y z$ and $x y^{i} z \in A$ for any $i \geq 0$.
(b) (10 points) Prove that A is not regular.

