1. (20 points) Use the pumping lemma to prove that each language listed below is not regular. For each language, I state Σ the input alphabet.
(a) $A_{1}=\{w \mid$ the number of zeros in w is less than the number of ones $\} . \Sigma=\{0,1\}$. For example, 1, 011, and 10100111 are in this language but 0 and 100 are not.

Solution:

Let p be a proposed pumping lemma constant, and let $w=0^{p} 1^{p+1} \in A_{1}$. For any $x y z=w$ with $1 \leq|y| \leq|x y| \leq p, y \in 0^{+}$. Therefore, $x y^{2} z=0^{p+|y|} 1^{p+1}$ has at least as many 0 s as 1 s , and therefore is not in A_{1}. It follows by the pumping lemma that A_{1} is not regular.
(b) $A_{2}=1^{2^{n}} . \Sigma=\{1\}$.

For example, 1, 11 and 11111111 are in this language but 111 is not.

Solution:

Let p be a proposed pumping lemma constant, and let $w=1^{2^{p}} \in A_{2}$. For any $x y z=w$ with $|x y| \leq p<$ $2^{p}, x y^{2} z=1^{2^{p}+|y|}$ has length that is greater than 2^{p} and less than 2^{p+1}, i.e. $2^{p}<2^{p}+|y|<2^{p+1}$, which holds since $1 \leq|y| \leq p<2^{p}$. It follows by the pumping lemma that A_{2} is not regular.
2. (20 points) Let

$$
\Sigma_{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \cdots\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Σ_{3} contains all size 3 columns of 0 s and 1 s . A string of symbols in Σ_{3} gives three rows of 0 s and 1 s . Consider each row to be a binary number with the most significant bit first. For example, let

$$
w=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

The first row of w is the binary representation of 7 , the second row corresponds to 5 , and the third row corresponds to 12 .
Let

$$
B_{+}=\left\{w \in \Sigma_{3}^{*} \mid \text { the bottom row of } w \text { is the sum of the top two rows }\right\} .
$$

Show that B is regular.

Figure 1: DFA for problem 3

Solution 1: I'll first present a NFA that recognize the reverse of $B_{+}, B_{+}^{\mathcal{R}}$. Figure 1 shows the NFA with

$$
A=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

$$
\begin{gathered}
B=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}, \\
C=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}, \\
D=\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} .
\end{gathered}
$$

This NFA basically checks the pencil-and-paper method for addition starting from the least-significant bit and working to the most signficant bit. The machine is in state q_{0} when the previous bit did not generate a carry, and state q_{0} when the previous bit does generate a carry. For example, the symbol $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is in A because $0+0=0$ with no carry in or carry out. Likewise, $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is in A because $1+1$ produces a sum of 0 and a carry to the next bit of 1 when the carry in is 0 . The symbols for which a state does not have an outgoing edge correspond to errors, which the NFA rejects.
The language $B_{+}^{\mathcal{R}}$ is regular because the NFA presented above recognizes it. As shown on homework 2, the regular languages are closed under reversal. Thus, B_{+}is regular as well.
Solution 2: This time, we construct an NFA the processes the string from left-to-right. The approach is very similar to the right-to-left DFA; the only difference is that the states of the left-to-right DFA keep track of whether or not a carry is expected from the next less significant bit. In fact, the two machines are so similar, that we can use the same transition diagram with just a slight change to the labels.
The NFA shown in Figure 1 recognizes B_{+}with labels A and D as before, and exchanging the definitions of sets B and C :

$$
\begin{aligned}
& B=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}, \\
& C=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\},
\end{aligned}
$$

3. (20 points) Let Σ_{3} be defined as in question 2 . Let

$$
B_{\times}=\left\{w \in \Sigma_{3}^{*} \mid \text { the bottom row of } w \text { is the product of the top two rows }\right\} .
$$

Show that B is not regular.

Solution:

Let p be a proposed pumping lemma constant, and let

$$
w=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]^{p-1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]^{p}
$$

This is a member of B_{\times}, because the first two rows correspond to integers 2^{p}, and $2^{p} \times 2^{p}=2^{2 p}$ which is an interger corresponding to the last row. For any $x y z=w$ with $|x y| \leq p, x y^{2} z$ leaves the value of the first two rows unchanged, but changes the value of the last row, i.e. the last row represents some integer that is not $2^{2 p}$. Therefore $x y^{2} z \notin B_{\times}$and B_{\times}is not regular by the pumping lemma.
4. (20 points) Consider the two languages described below:

$$
\begin{aligned}
& C_{1}=\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*} \mid \exists x, y \in \Sigma^{*} .(w=x y) \wedge \# a(x)=\# b(y)\right\} \\
& C_{2}=\left\{w \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*} \mid \exists x, y \in \Sigma^{*} .(w=x \cdot \mathrm{c} \cdot y) \wedge \# a(x)=\# b(y)\right\}
\end{aligned}
$$

One of these languages is regular and the other is not. Determine which is which and give short proofs for your conclusions.

Solution:

C_{1} is regular, and has the regular expression Σ^{*}, where Σ is the alphabet. We prove that all strings are in C_{1} by induction:

Base case: $s=\epsilon$ Let $x=y=\epsilon$. Then $x y=\epsilon \epsilon=\epsilon=s$ and $\# a(x)=\# b(y)=0$.
Induction step: $s=w \cdot c$ By the induction hypothesis, $w \in C_{1}$; thus we can find strings x and y with $x y=w$ and $\# a(x)=\# b(y)$. If $c \neq \mathrm{b}$, then let $y^{\prime}=y c$ and let $x^{\prime}=x$. Then $w \cdot c=x^{\prime} y^{\prime}$ and

$$
\# a\left(x^{\prime}\right)=\# a(x)=\# b(y)=\# b\left(y^{\prime}\right)
$$

Thus, $s=w \cdot c \in C_{1}$ as required.
If $c=\mathrm{b}$ and $y=\epsilon$, then $\# a(x)=\# b(y)=0$. Choosing $x^{\prime}=w \cdot c$ and $y^{\prime}=\epsilon$ satisfies $w \dot{c}=x^{\prime} y^{\prime}$ and

$$
\# a\left(x^{\prime}\right)=\# a(x)=0=\# b(y)=\# b\left(y^{\prime}\right)
$$

Thus, $s=w \cdot c \in C_{1}$ as required
If $c=\mathrm{b}$ and $y \neq \epsilon$, let $y=d \cdot v$ for $d \in \Sigma$ and $v \in \Sigma^{*}$. If $d=\mathrm{a}$, choose $x^{\prime}=x \cdot \mathrm{a}$ and $y^{\prime}=v \cdot \mathrm{~b}$. We have $w \cdot c=x^{\prime} y^{\prime}$ and

$$
\# a\left(x^{\prime}\right)=\# a(x)+1=\# b(y)+1=\# b\left(y^{\prime}\right)
$$

Thus, $s=w \cdot c \in C_{1}$ as required.
If $d=\mathrm{b}$, choose $x^{\prime}=x \cdot \mathrm{~b}$ and $y^{\prime}=v \cdot \mathrm{~b}$. We have $w \cdot \mathrm{c}=x^{\prime} y^{\prime}$ and

$$
\# a\left(x^{\prime}\right)=\# a(x)=\# b(y)=\# b\left(y^{\prime}\right)
$$

Again, $s=w \cdot \mathrm{c} \in C_{1}$ as required.
C_{2} is not regular.
Let p be a proposed pumping lemma constant, and let $w=\mathrm{a}^{p} \mathrm{cb}^{p} \in C_{2}$. For any $x y z=w$ with $|x y| \leq p$ and $|y| \geq 1, x y^{0} z=a^{p-|y|} \mathrm{cb}^{p}$ has fewer a's than b's (and contains only one c), and therefore is not in C_{2}. It follows by the pumping lemma that C_{2} is not regular.
5. ($\mathbf{3 0}$ points, from Sipser, problem 2.6)

Give context free grammars generating the following languages:
(a) (10 points) $\left\{w \mid \exists n \geq 0 .\left(w=\mathrm{a}^{n} \mathrm{~b}^{2 \mathrm{n}}\right) \vee\left(\mathrm{w}=\mathrm{a}^{3 \mathrm{n}} \mathrm{b}^{\mathrm{n}}\right)\right\}$

Solution:

$$
\begin{aligned}
S & \rightarrow T_{2 b} \mid T_{3 a} \\
T_{2 b} & \rightarrow \mathrm{a} T_{1} \mathrm{bb} \\
T_{3 a} & \rightarrow \mathrm{aaa}_{2} \mathrm{~b}
\end{aligned}
$$

(b) (10 points) The complement of $\left\{w \mid \exists n \geq 0 . w=\mathrm{a}^{n} \mathrm{~b}^{n}\right\}$.

Solution:

$$
\begin{aligned}
S & \rightarrow T_{a}\left|T_{b}\right| T_{b a} \\
T_{a} & \rightarrow \mathrm{a} T_{0} \mid \mathrm{a} T_{a} \\
T_{b} & \rightarrow T_{0} \mathrm{~b} \mid T_{b} \mathrm{~b} \\
T_{0} & \rightarrow \mathrm{a} T_{0} \mathrm{~b} \mid \epsilon \\
T_{b a} & \rightarrow T_{x} \mathrm{ba} T_{x} \\
T_{x} & \rightarrow \mathrm{a} T_{x}\left|\mathrm{~b} T_{x}\right| \epsilon
\end{aligned}
$$

Here's how it works. In the first step, the derivation "chooses" whether it will generate a string with more a's than b's (that's what T_{a} generates), a string with more b's than a's (that's what T_{b} generates), or a string that has a b before an a (that's what $T_{b a}$ does).
Variable T_{0} generates strings of the form $\mathrm{a}^{n} \mathrm{~b}^{n}$. Variable T_{a} generates strings that have one or more a's preceeding a string generated by T_{0}; in other words, these are strings of the form $a^{n} b^{m}$ with $n>m$. Likewise, T_{b} generates strings of the form $a^{n} b^{m}$ with $n<m$. Variable T_{x} generates any string in Σ^{*} (assuming $\Sigma=\{\mathrm{a}, \mathrm{b}\}$), and $T_{b a}$ uses T_{x} to generate all strings in $\Sigma^{*} \mathrm{ba} \Sigma^{*}$.
(c) (10 points) $\left\{x_{1} \mathrm{c} x_{2} \mathrm{c} \cdots x_{k} \mid\right.$ each $x_{i} \in\{\mathrm{a}, \mathrm{b}\}^{*}$, and for some i and $\left.j, x_{i}=x_{j}^{\mathcal{R}}\right\}$.

Solution:

$$
\begin{aligned}
S & \rightarrow L M R \\
M & \rightarrow \mathrm{a} M \mathrm{a}|\mathrm{~b} M \mathrm{~b}| \mathrm{c} L \\
L & \rightarrow T_{x} \mathrm{c} L \mid \epsilon \\
R & \rightarrow R \mathrm{c} T_{x} \mid \epsilon \\
T_{x} & \rightarrow \mathrm{a} T_{x}\left|\mathrm{~b} T_{x}\right| \epsilon
\end{aligned}
$$

A derivation creates a "left part" (L), a "middle part" (M) and a "right part" (R). The middle part generates strings of the form $x_{i} \mathrm{c} x_{i+1} \mathrm{C} \cdots \mathrm{c} x_{i}^{\mathcal{R}}$, and the left and right parts generate the rest of the string.
In particular, L generates strings of the form $\left((a \cup b)^{*} c\right)^{*}$, and R generates strings of the form $\left(\mathrm{c}(\mathrm{a} \cup \mathrm{b})^{*}\right)^{*}$. Note that an equivalent regular expression for L is $\left(\Sigma^{*} c\right)^{*}$ Thus, $\mathrm{c} L$ generates $\left.c\left(\Sigma^{*} c\right)^{*}\right)$ which matches the string between x_{i} and $x_{j}: \mathrm{c} x_{i+1} \mathrm{c} x_{i+1} \mathrm{C} \cdots \mathrm{c}$.

For parts (a) and (b), the alphabet is $\{a, b\}$. For part (c), the alphabet is $\{a, b, c\}$.
6. (20 points, Extra Credit) Consider the language below from the September 22 lecture notes:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& A=\left(\mathrm{aa}^{*} \mathrm{c}\right)^{n}\left(\mathrm{bb}{ }^{*} \mathrm{c}\right)^{n} \cup \Sigma^{*} \mathrm{cc} \Sigma^{*}
\end{aligned}
$$

(a) (10 points) Prove that A satisfies the conditions of the pumping lemma as stated in Sipser or the September 22 notes. In other words, show that you can find a constant $p>0$ such that for any string $w \in A$ with $|w|>p$, you can find strings x, y and z such that $w=x y z$ and $x y^{i} z \in A$ for any $i \geq 0$.

Solution: Let $p=3$, and let $w \in A$ with $|w| \geq p$. We consider five cases according to the first few symbols of w :
$w=$ aa u for some $u \in \Sigma^{*}$:
Let $x=\epsilon, y=\mathrm{a}$ and $z=\mathrm{a} u$. Thus, $x y^{i} z=\mathrm{a}^{i+1} u$. If $w \in\left(\mathrm{aa}^{*} c\right)^{n}\left(\mathrm{bb}^{*} \mathrm{c}\right)^{n}$ then,

$$
\begin{aligned}
u & \in\left(\mathrm{a}^{*} \mathrm{c}\right)\left(\mathrm{aa}^{*} \mathrm{c}\right)^{n-1}\left(\mathrm{bb}^{*} \mathrm{c}\right)^{n} \\
\Rightarrow \quad \mathrm{a}^{i+1} u & \in\left(\mathrm{aa}^{*} c\right)\left(\mathrm{aa}^{*} \mathrm{c}\right)^{n-1}\left(\mathrm{bb}^{*} \mathrm{c}\right)^{n} \\
& =\left(\mathrm{aa}^{*} c\right)^{n}\left(\mathrm{bb}^{*} \mathrm{c}\right)^{n} \\
& \subseteq A
\end{aligned}
$$

Likewise, if $w \in \Sigma^{*} \operatorname{cc} \Sigma^{*}$, then u and $a^{i+1} u$ are as well. In all cases, $x y^{i} z=a^{i+1} u \in A$ as required.
$w=\operatorname{acaa} u$ for some $u \in \Sigma^{*}$:
Let $x=\mathrm{ac}, y=\mathrm{a}$ and $z=\mathrm{a} u$. Then, $x y^{i} z \in A$ by arguments similar to those for the previous case.
$w=\operatorname{acac} u$ for some $u \in \Sigma^{*}$:
Let $x=\mathrm{ac}, y=\mathrm{a}$ and $z=\mathrm{ac}$. If $i>0$, then $x y^{i} z \in A$ by arguments similar to those for the previous cases. Otherwise, $i=0$, and

$$
x y^{i} z=\operatorname{acc} u \in \Sigma^{*} \operatorname{cc} \Sigma^{x} * \subseteq A
$$

as required.
$w=\mathrm{acb} u$ for some $u \in \Sigma^{*}$:
Let $x=\mathrm{ac}, y=\mathrm{b}$ and $z=u$. Then, we can show that $x y^{i} z \in A$ by considering whether w was in $\left(\mathrm{aa}{ }^{*} c\right)^{n}\left(\mathrm{bb}^{*} \mathrm{c}\right)^{n}$ or $\Sigma^{*} \mathrm{cc} \Sigma^{*}$, and in the first case whether the first symbol of u is a b or c.
w does not start with aa, acaa, aca, or acb: Then, $w \notin\left(\mathrm{aa}^{*} c\right)^{n}\left(\mathrm{bb}^{*} \mathrm{c}\right)^{n}$ which means that $w \in \Sigma^{*} \mathrm{cc} \Sigma^{*}$. Let $x=\epsilon, y=\mathrm{a}$, and $z=\mathrm{c} u$.

$$
x y^{i} z \in \Sigma^{*} \operatorname{cc} \Sigma^{x} * \subseteq A
$$

as required.
Thus, for any string w with $|w|>3$, we can find string x, y and z that satisfy the conditions of the pumping lemma.
Prove that A is not regular.
Solution 1: Assume that A is recognized by DFA D with p states. There are $p+1$ different strings of the form $(a c)^{i}$, for $i=1,2, \ldots, p, p+1$. By the pigeon-hole principle, there exists r and q with $1 \leq r<q \leq p+1$ such that D is in the same state after processing either of strings $(a c)^{r}$ and $(a c)^{q}$. However, this implies that D ends in the same state q on both of inputs $(a c)^{r}(a c)^{r} \in A$ and $(a c)^{q}(a c)^{r} \notin A$. This is a contradiction if q is an accepting state or if q is not an accepting state, therefore A is not regular.
Solution 2: Let

$$
\begin{aligned}
B & =(\mathrm{ac})^{*}(\mathrm{bc})^{*} \\
C & =A \cap B \\
& =(\mathrm{ac})^{n}(\mathrm{bc})^{n}
\end{aligned}
$$

We use the pumping lemma to show that C is not regular. Because B is regular and the regular languages are closed under intersection, this will show that A is not regular either.
Let p be a proposed pumping constant for C, and let $w=(\mathrm{ac})^{p}(\mathrm{bc})^{p} \in C$. Let x, y and z be any three strings such that $w=x y z,|x y| \leq p$ and $|y| \geq 1$. Note that $x y$ must be a prefix of (ac $)^{p}$ because $|x y| \leq p<\left|(\mathrm{ac})^{p}\right|=2 p$. Thus, $x y^{2} z=u(\mathrm{bc})^{p}$ where $u \neq(\mathrm{ac})^{n}$, which shows that $x y^{2} z \not \ln C$. Therefore, C is not regular which shows that A cannot be regular either.

